Header logo is


2017


On the Design of {LQR} Kernels for Efficient Controller Learning
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

am ics pn

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

2017


arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


no image
Optimal gamification can help people procrastinate less

Lieder, F., Griffiths, T. L.

Annual Meeting of the Society for Judgment and Decision Making, Annual Meeting of the Society for Judgment and Decision Making, November 2017 (conference)

re

Project Page [BibTex]

Project Page [BibTex]


Coupling Adaptive Batch Sizes with Learning Rates
Coupling Adaptive Batch Sizes with Learning Rates

Balles, L., Romero, J., Hennig, P.

In Proceedings Conference on Uncertainty in Artificial Intelligence (UAI) 2017, pages: 410-419, (Editors: Gal Elidan and Kristian Kersting), Association for Uncertainty in Artificial Intelligence (AUAI), Conference on Uncertainty in Artificial Intelligence (UAI), August 2017 (inproceedings)

Abstract
Mini-batch stochastic gradient descent and variants thereof have become standard for large-scale empirical risk minimization like the training of neural networks. These methods are usually used with a constant batch size chosen by simple empirical inspection. The batch size significantly influences the behavior of the stochastic optimization algorithm, though, since it determines the variance of the gradient estimates. This variance also changes over the optimization process; when using a constant batch size, stability and convergence is thus often enforced by means of a (manually tuned) decreasing learning rate schedule. We propose a practical method for dynamic batch size adaptation. It estimates the variance of the stochastic gradients and adapts the batch size to decrease the variance proportionally to the value of the objective function, removing the need for the aforementioned learning rate decrease. In contrast to recent related work, our algorithm couples the batch size to the learning rate, directly reflecting the known relationship between the two. On three image classification benchmarks, our batch size adaptation yields faster optimization convergence, while simultaneously simplifying learning rate tuning. A TensorFlow implementation is available.

ps pn

Code link (url) Project Page [BibTex]

Code link (url) Project Page [BibTex]


no image
Dynamic Time-of-Flight

Schober, M., Adam, A., Yair, O., Mazor, S., Nowozin, S.

Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 170-179, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (conference)

ei pn

DOI [BibTex]

DOI [BibTex]


Locomotion of light-driven soft microrobots through a hydrogel via local melting
Locomotion of light-driven soft microrobots through a hydrogel via local melting

Palagi, S., Mark, A. G., Melde, K., Qiu, T., Zeng, H., Parmeggiani, C., Martella, D., Wiersma, D. S., Fischer, P.

In 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pages: 1-5, July 2017 (inproceedings)

Abstract
Soft mobile microrobots whose deformation can be directly controlled by an external field can adapt to move in different environments. This is the case for the light-driven microrobots based on liquid-crystal elastomers (LCEs). Here we show that the soft microrobots can move through an agarose hydrogel by means of light-controlled travelling-wave motions. This is achieved by exploiting the inherent rise of the LCE temperature above the melting temperature of the agarose gel, which facilitates penetration of the microrobot through the hydrogel. The locomotion performance is investigated as a function of the travelling-wave parameters, showing that effective propulsion can be obtained by adapting the generated motion to the specific environmental conditions.

pf

DOI [BibTex]

DOI [BibTex]


Virtual vs. {R}eal: Trading Off Simulations and Physical Experiments in Reinforcement Learning with {B}ayesian Optimization
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics pn

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]


Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets

Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017), 54, pages: 528-536, Proceedings of Machine Learning Research, (Editors: Sign, Aarti and Zhu, Jerry), PMLR, April 2017 (conference)

pn

pdf link (url) Project Page [BibTex]

pdf link (url) Project Page [BibTex]


Wireless micro-robots for endoscopic applications in urology
Wireless micro-robots for endoscopic applications in urology

Adams, F., Qiu, T., Mark, A. G., Melde, K., Palagi, S., Miernik, A., Fischer, P.

In Eur Urol Suppl, 16(3):e1914, March 2017 (inproceedings)

Abstract
Endoscopy is an essential and common method for both diagnostics and therapy in Urology. Current flexible endoscope is normally cable-driven, thus it is hard to be miniaturized and its reachability is restricted as only one bending section near the tip with one degree of freedom (DoF) is allowed. Recent progresses in micro-robotics offer a unique opportunity for medical inspections in minimally invasive surgery. Micro-robots are active devices that has a feature size smaller than one millimeter and can normally be actuated and controlled wirelessly. Magnetically actuated micro-robots have been demonstrated to propel through biological fluids.Here, we report a novel micro robotic arm, which is actuated wirelessly by ultrasound. It works as a miniaturized endoscope with a side length of ~1 mm, which fits through the 3 Fr. tool channel of a cystoscope, and successfully performs an active cystoscopy in a rabbit bladder.

pf

link (url) DOI [BibTex]


no image
An automatic method for discovering rational heuristics for risky choice

Lieder, F., Krueger, P. M., Griffiths, T. L.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society, 2017, Falk Lieder and Paul M. Krueger contributed equally to this publication. (inproceedings)

Abstract
What is the optimal way to make a decision given that your time is limited and your cognitive resources are bounded? To answer this question, we formalized the bounded optimal decision process as the solution to a meta-level Markov decision process whose actions are costly computations. We approximated the optimal solution and evaluated its predictions against human choice behavior in the Mouselab paradigm, which is widely used to study decision strategies. Our computational method rediscovered well-known heuristic strategies and the conditions under which they are used, as well as novel heuristics. A Mouselab experiment confirmed our model’s main predictions. These findings are a proof-of-concept that optimal cognitive strategies can be automatically derived as the rational use of finite time and bounded cognitive resources.

re

Project Page [BibTex]

Project Page [BibTex]


no image
A reward shaping method for promoting metacognitive learning

Lieder, F., Krueger, P. M., Callaway, F., Griffiths, T. L.

In Proceedings of the Third Multidisciplinary Conference on Reinforcement Learning and Decision-Making, 2017 (inproceedings)

re

Project Page [BibTex]

Project Page [BibTex]


no image
When does bounded-optimal metareasoning favor few cognitive systems?

Milli, S., Lieder, F., Griffiths, T. L.

In AAAI Conference on Artificial Intelligence, 31, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
The Structure of Goal Systems Predicts Human Performance

Bourgin, D., Lieder, F., Reichman, D., Talmon, N., Griffiths, T.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
Learning to (mis) allocate control: maltransfer can lead to self-control failure

Bustamante, L., Lieder, F., Musslick, S., Shenhav, A., Cohen, J.

In The 3rd Multidisciplinary Conference on Reinforcement Learning and Decision Making. Ann Arbor, Michigan, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
Mouselab-MDP: A new paradigm for tracing how people plan

Callaway, F., Lieder, F., Krueger, P. M., Griffiths, T. L.

In The 3rd multidisciplinary conference on reinforcement learning and decision making, 2017 (inproceedings)

re

[BibTex]

[BibTex]


no image
Enhancing metacognitive reinforcement learning using reward structures and feedback

Krueger, P. M., Lieder, F., Griffiths, T. L.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society, 2017 (inproceedings)

re

Project Page Project Page [BibTex]

Project Page Project Page [BibTex]


no image
Helping people choose subgoals with sparse pseudo rewards

Callaway, F., Lieder, F., Griffiths, T. L.

In Proceedings of the Third Multidisciplinary Conference on Reinforcement Learning and Decision Making, 2017 (inproceedings)

re

[BibTex]

[BibTex]

2014


Probabilistic Progress Bars
Probabilistic Progress Bars

Kiefel, M., Schuler, C., Hennig, P.

In Conference on Pattern Recognition (GCPR), 8753, pages: 331-341, Lecture Notes in Computer Science, (Editors: Jiang, X., Hornegger, J., and Koch, R.), Springer, GCPR, September 2014 (inproceedings)

Abstract
Predicting the time at which the integral over a stochastic process reaches a target level is a value of interest in many applications. Often, such computations have to be made at low cost, in real time. As an intuitive example that captures many features of this problem class, we choose progress bars, a ubiquitous element of computer user interfaces. These predictors are usually based on simple point estimators, with no error modelling. This leads to fluctuating behaviour confusing to the user. It also does not provide a distribution prediction (risk values), which are crucial for many other application areas. We construct and empirically evaluate a fast, constant cost algorithm using a Gauss-Markov process model which provides more information to the user.

ei ps pn

website+code pdf DOI [BibTex]

2014


website+code pdf DOI [BibTex]


Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics
Probabilistic Solutions to Differential Equations and their Application to Riemannian Statistics

Hennig, P., Hauberg, S.

In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, 33, pages: 347-355, JMLR: Workshop and Conference Proceedings, (Editors: S Kaski and J Corander), Microtome Publishing, Brookline, MA, AISTATS, April 2014 (inproceedings)

Abstract
We study a probabilistic numerical method for the solution of both boundary and initial value problems that returns a joint Gaussian process posterior over the solution. Such methods have concrete value in the statistics on Riemannian manifolds, where non-analytic ordinary differential equations are involved in virtually all computations. The probabilistic formulation permits marginalising the uncertainty of the numerical solution such that statistics are less sensitive to inaccuracies. This leads to new Riemannian algorithms for mean value computations and principal geodesic analysis. Marginalisation also means results can be less precise than point estimates, enabling a noticeable speed-up over the state of the art. Our approach is an argument for a wider point that uncertainty caused by numerical calculations should be tracked throughout the pipeline of machine learning algorithms.

ei ps pn

pdf Youtube Supplements Project page link (url) [BibTex]

pdf Youtube Supplements Project page link (url) [BibTex]


3D nanofabrication on complex seed shapes using glancing angle deposition
3D nanofabrication on complex seed shapes using glancing angle deposition

Hyeon-Ho, J., Mark, A. G., Gibbs, J. G., Reindl, T., Waizmann, U., Weis, J., Fischer, P.

In 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), pages: 437-440, January 2014 (inproceedings)

Abstract
Three-dimensional (3D) fabrication techniques promise new device architectures and enable the integration of more components, but fabricating 3D nanostructures for device applications remains challenging. Recently, we have performed glancing angle deposition (GLAD) upon a nanoscale hexagonal seed array to create a variety of 3D nanoscale objects including multicomponent rods, helices, and zigzags [1]. Here, in an effort to generalize our technique, we present a step-by-step approach to grow 3D nanostructures on more complex nanoseed shapes and configurations than before. This approach allows us to create 3D nanostructures on nanoseeds regardless of seed sizes and shapes.

pf

DOI [BibTex]

DOI [BibTex]


no image
Probabilistic ODE Solvers with Runge-Kutta Means

Schober, M., Duvenaud, D., Hennig, P.

In Advances in Neural Information Processing Systems 27, pages: 739-747, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

ei pn

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Active Learning of Linear Embeddings for Gaussian Processes

Garnett, R., Osborne, M., Hennig, P.

In Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence, pages: 230-239, (Editors: NL Zhang and J Tian), AUAI Press , Corvallis, Oregon, UAI2014, 2014, another link: http://arxiv.org/abs/1310.6740 (inproceedings)

ei pn

PDF Web [BibTex]

PDF Web [BibTex]


no image
Probabilistic Shortest Path Tractography in DTI Using Gaussian Process ODE Solvers

Schober, M., Kasenburg, N., Feragen, A., Hennig, P., Hauberg, S.

In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, Lecture Notes in Computer Science Vol. 8675, pages: 265-272, (Editors: P. Golland, N. Hata, C. Barillot, J. Hornegger and R. Howe), Springer, Heidelberg, MICCAI, 2014 (inproceedings)

ei pn

DOI [BibTex]

DOI [BibTex]


no image
Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature

Gunter, T., Osborne, M., Garnett, R., Hennig, P., Roberts, S.

In Advances in Neural Information Processing Systems 27, pages: 2789-2797, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), Curran Associates, Inc., 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014 (inproceedings)

ei pn

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Algorithm selection by rational metareasoning as a model of human strategy selection

Lieder, F., Plunkett, D., Hamrick, J. B., Russell, S. J., Hay, N. J., Griffiths, T. L.

In Advances in Neural Information Processing Systems 27, 2014 (inproceedings)

Abstract
Selecting the right algorithm is an important problem in computer science, because the algorithm often has to exploit the structure of the input to be efficient. The human mind faces the same challenge. Therefore, solutions to the algorithm selection problem can inspire models of human strategy selection and vice versa. Here, we view the algorithm selection problem as a special case of metareasoning and derive a solution that outperforms existing methods in sorting algorithm selection. We apply our theory to model how people choose between cognitive strategies and test its prediction in a behavioral experiment. We find that people quickly learn to adaptively choose between cognitive strategies. People's choices in our experiment are consistent with our model but inconsistent with previous theories of human strategy selection. Rational metareasoning appears to be a promising framework for reverse-engineering how people choose among cognitive strategies and translating the results into better solutions to the algorithm selection problem.

re

Project Page [BibTex]

Project Page [BibTex]


Active Microrheology of the Vitreous of the Eye applied to Nanorobot Propulsion
Active Microrheology of the Vitreous of the Eye applied to Nanorobot Propulsion

Qiu, T., Schamel, D., Mark, A. G., Fischer, P.

In 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), pages: 3801-3806, IEEE International Conference on Robotics and Automation ICRA, 2014, Best Automation Paper Award – Finalist. (inproceedings)

Abstract
Biomedical applications of micro or nanorobots require active movement through complex biological fluids. These are generally non-Newtonian (viscoelastic) fluids that are characterized by complicated networks of macromolecules that have size-dependent rheological properties. It has been suggested that an untethered microrobot could assist in retinal surgical procedures. To do this it must navigate the vitreous humor, a hydrated double network of collagen fibrils and high molecular-weight, polyanionic hyaluronan macromolecules. Here, we examine the characteristic size that potential robots must have to traverse vitreous relatively unhindered. We have constructed magnetic tweezers that provide a large gradient of up to 320 T/m to pull sub-micron paramagnetic beads through biological fluids. A novel two-step electrical discharge machining (EDM) approach is used to construct the tips of the magnetic tweezers with a resolution of 30 mu m and high aspect ratio of similar to 17:1 that restricts the magnetic field gradient to the plane of observation. We report measurements on porcine vitreous. In agreement with structural data and passive Brownian diffusion studies we find that the unhindered active propulsion through the eye calls for nanorobots with cross-sections of less than 500 nm.

Best Automation Paper Award – Finalist.

pf

[BibTex]

[BibTex]


no image
Incremental Local Gaussian Regression

Meier, F., Hennig, P., Schaal, S.

In Advances in Neural Information Processing Systems 27, pages: 972-980, (Editors: Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence and K.Q. Weinberger), 28th Annual Conference on Neural Information Processing Systems (NIPS), 2014, clmc (inproceedings)

am ei pn

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Efficient Bayesian Local Model Learning for Control

Meier, F., Hennig, P., Schaal, S.

In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, pages: 2244 - 2249, IROS, 2014, clmc (inproceedings)

Abstract
Model-based control is essential for compliant controland force control in many modern complex robots, like humanoidor disaster robots. Due to many unknown and hard tomodel nonlinearities, analytical models of such robots are oftenonly very rough approximations. However, modern optimizationcontrollers frequently depend on reasonably accurate models,and degrade greatly in robustness and performance if modelerrors are too large. For a long time, machine learning hasbeen expected to provide automatic empirical model synthesis,yet so far, research has only generated feasibility studies butno learning algorithms that run reliably on complex robots.In this paper, we combine two promising worlds of regressiontechniques to generate a more powerful regression learningsystem. On the one hand, locally weighted regression techniquesare computationally efficient, but hard to tune due to avariety of data dependent meta-parameters. On the other hand,Bayesian regression has rather automatic and robust methods toset learning parameters, but becomes quickly computationallyinfeasible for big and high-dimensional data sets. By reducingthe complexity of Bayesian regression in the spirit of local modellearning through variational approximations, we arrive at anovel algorithm that is computationally efficient and easy toinitialize for robust learning. Evaluations on several datasetsdemonstrate very good learning performance and the potentialfor a general regression learning tool for robotics.

am ei pn

PDF link (url) DOI [BibTex]

PDF link (url) DOI [BibTex]


no image
Increasing the sensor performance using Au modified high temperature superconducting YBa2Cu3O7-delta thin films

Katzer, C., Stahl, C., Michalowski, P., Treiber, S., Westernhausen, M., Schmidl, F., Seidel, P., Schütz, G., Albrecht, J.

In 507, IOP Pub., Genova, Italy, 2014 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
The high availability of extreme events serves resource-rational decision-making

Lieder, F., Hsu, M., Griffiths, T. L.

In Proceedings of the 36th Annual Conference of the Cognitive Science Society, 2014 (inproceedings)

re

[BibTex]

[BibTex]


no image
Layers of Abstraction: (Neuro)computational models of learning local and global statistical regularities

Diaconescu, A., Lieder, F., Mathys, C., Stephan, K. E.

In 20th Annual Meeting of the Organization for Human Brain Mapping, 2014 (inproceedings)

re

[BibTex]

[BibTex]

2011


no image
Optimal Reinforcement Learning for Gaussian Systems

Hennig, P.

In Advances in Neural Information Processing Systems 24, pages: 325-333, (Editors: J Shawe-Taylor and RS Zemel and P Bartlett and F Pereira and KQ Weinberger), Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS), 2011 (inproceedings)

Abstract
The exploration-exploitation trade-off is among the central challenges of reinforcement learning. The optimal Bayesian solution is intractable in general. This paper studies to what extent analytic statements about optimal learning are possible if all beliefs are Gaussian processes. A first order approximation of learning of both loss and dynamics, for nonlinear, time-varying systems in continuous time and space, subject to a relatively weak restriction on the dynamics, is described by an infinite-dimensional partial differential equation. An approximate finitedimensional projection gives an impression for how this result may be helpful.

ei pn

PDF Web [BibTex]

2011


PDF Web [BibTex]


no image
Amorphous grain boundary layers in the ferromagnetic nanograined ZnO films

Straumal, B. B., Mazilkin, A. A., Protasova, S. G., Myatiev, A. A., Straumal, P. B., Goering, E., Baretzky, B.

In 520, pages: 1192-1194, Hersonissos, Greece, 2011 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Inversed solid-phase grain boundary wetting in the Al-Zn system

Protasova, S. G., Kogtenkova, O. A., Straumal, B. B., Zieba, P., Baretzky, B.

In 46, pages: 4349-4353, Mie, Japan, 2011 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
First measurement of the heat effect of the grain boundary wetting phase transition

Straumal, B. B., Kogtenkova, O. A., Protasova, S. G., Zieba, P., Czeppe, T., Baretzky, B., Valiev, R. Z.

In 46, pages: 4243, Mie, Japan, 2011 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]


no image
Transmission electron microscopy investigation of boundaries between amorphous "grains" in Ni50Nb20Y30 alloy

Mazilkin, A. A., Abrosimova, G. E., Protasova, S. G., Straumal, B. B., Schütz, G., Dobatkin, S. V., Bakai, A. S.

In 46, pages: 4336-4342, Mie, Japan, 2011 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]

2008


no image
Wetting and premelting of triple junctions and grain boundaries in the Al-Zn alloys

Straumal, B., Kogtenkova, O., Protasova, S., Mazilkin, A., Zieba, P., Czeppe, T., Wojewoda-Budka, J., Faryna, M.

In 495, pages: 126-131, Alicante, Spain, 2008 (inproceedings)

mms

DOI [BibTex]

2008


DOI [BibTex]


no image
Study of the intermixing of Fe\textendashPt multilayers by analytical and high-resolution transmission electron microscopy

Sigle, W., Kaiser, T., Goll, D., Goo, N. H., Srot, V., van Aken, P. A., Detemple, E., Jäger, W.

In EMC2008, 14th European Microscopy Congress, Vol. 2: Materials Science, pages: 109-110, Springer, Aachen, Germany, 2008 (inproceedings)

mms

DOI [BibTex]

DOI [BibTex]

2006


no image
Ab-initio calculations: I. Basic principles of the density functional electron theory and combination with phenomenological theories

Fähnle, M.

In Structural defects in ordered alloys and intermetallics. Characterization and modelling, pages: IX-1-IX-10, COST and CNRS, Bonascre [Ariege, France], 2006 (inproceedings)

mms

[BibTex]

2006


[BibTex]


no image
Hard magnetic FePt thin films and nanostructures in L1(0) phases

Goll, D., Breitling, A., Goo, N. H., Sigle, W., Hirscher, M., Schütz, G.

In 13, pages: 97-101, Beijing, PR China, 2006 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Ab-initio calculations: II. Application to atomic defects, phase diagrams, dislocations

Fähnle, M.

In Structural defects in ordered alloys and intermetallics. Characterization and modelling, pages: XIV-1-XIV-11, COST and CNRS, Bonascre [Ariege, France], 2006 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Residual stress analysis in reed pipe brass tongues of historic organs

Manescu, A., Giuliani, A., Fiori, F., Baretzky, B.

In Residual Stresses VII. 7th Europen Conference on Residual Stresses (ECRS7), pages: 969-974, Trans Tech, Berlin [Germany], 2006 (inproceedings)

mms

[BibTex]

[BibTex]


no image
High-pressure influence on the kinetics of grain boundary segregation in the Cu-Bi system

Chang, L.-S., Straumal, B., Rabkin, E., Lojkowski, W., Gust, W.

In 258-260, pages: 390-396, Aveiro (Portugal), 2006 (inproceedings)

mms

[BibTex]

[BibTex]

2003


no image
Grain boundary phase transitions in the Al-Mg system and their influence on high-strain rate superplasticity

Straumal, B. B., Lopez, G. A., Mittemeijer, E. J., Gust, W., Zhilyaev, A. P.

In 216-217, pages: 307-312, Moscow, Russia, 2003 (inproceedings)

mms

[BibTex]

2003


[BibTex]


no image
Influence of grain boundary phase transitions on the diffusion-related properties

Straumal, B., Baretzky, B.

In Proceedings of the International Conference on Diffusion, Segregation and Stresses in Materials, pages: 53-64, Defect and Diffusion Forum, Scitec Publications Ltd., Moscow, Russia, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Are carbon nanostructures an efficient hydrogen storage medium?

Hirscher, M., Becher, M., Haluska, M., von Zeppelin, F., Chen, X., Dettlaff-Weglikowska, U., Roth, S.

In 356-357, pages: 433-437, Annecy, France, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Grain boundary faceting phase transition and thermal grooving in Cu

Straumal, B. B., Polyakov, S. A., Bischoff, E., Mittemeijer, E. J., Gust, W.

In Proceedings of the International Conference on Diffusion, Segregation and Stresses in Materials, 216/217, pages: 93-100, Diffusion and Defect Data, Pt. A, Defect and Diffusion Forum, Scitec Publ., Moscow, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Grain boundary faceting phase transition and thermal grooving in Cu

Straumal, B. B., Polyakov, S. A., Bischoff, E., Mittemeijer, E. J., Gust, W.

In Proceedings of the International Conference on Diffusion, Segregation and Stresses in Materials, 216/217, pages: 93-100, Diffusion and Defect Data, Pt. A, Defect and Diffusion Forum, Scitec Publ., Moscow, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Coercivity mechanism in nanocrystalline and bonded magnets

Goll, D., Kronmüller, H.

In Bonded Magnets. Proceedings of the NATO Advanced Research Workshop on Science and Technology of Bonded Magnets, 118, pages: 115-127, NATO Science Series: Series 2, Mathematics, Physics and Chemistry, Kluwer Acad. Publ., Newark, USA, 2003 (inproceedings)

mms

[BibTex]

[BibTex]


no image
Investigation of Electromigration in Copper Interconnects by Noise Measurements

Emelianov, V., Ganesan, G., Puzic, A., Schulz, S., Eizenberg, M., Habermeier, H., Stoll, H.

In Noise as a Tool for Studying Materials, pages: 271-281, Proceedings of SPIE, Santa Fe, New Mexico, 2003 (inproceedings)

mms

[BibTex]

[BibTex]