Header logo is


2012


Thumb xl toc image
Fourier-transform photocurrent spectroscopy using a supercontinuum light source

Petermann, C., Beigang, R., Fischer, P.

APPLIED PHYSICS LETTERS, 100(6), 2012 (article)

Abstract
We demonstrate an implementation of frequency-encoded photocurrent spectroscopy using a super-continuum light source. The spectrally broad light is spatially dispersed and modulated with a special mechanical chopper design that permits a continuous wavelength-dependent modulation. After recombination, the light beam contains a frequency encoded spectrum which enables us to map the spectral response of a given sample in 60 ms and with a lateral resolution of 10 mu m. (C) 2012 American Institute of Physics.

pf

DOI [BibTex]

2012


DOI [BibTex]


Thumb xl toc image2
Eine neue Form von Cavity Enhanced Absorption Spectroscopy

Petermann, C., Fischer, P.

DE Gruyter, 79(1), 2012, Best paper award OPTO 2011 (article)

Abstract
Wir stellen eine Kopplungsmethode für resonatorgestützte Absorptionsmessungen vor, bei der Licht durch einen im Resonator platzierten akustooptischen Modulator aktiv ein- und ausgekoppelt wird. Dies ermöglicht es Cavity-Ring-Down-Spektroskopie (CRDS) mit breitbandigen und zeitlich inkohärenten Lichtquellen niedriger spektraler Leistungsdichte durchzuführen. Das Verfahren wird zum ersten Mal mit einer breitbandigen Superkontinuum-Quelle demonstriert.

___________________________________________________________________________________________

A new coupling scheme for cavity enhanced absorption spectroscopy makes use of an intracavity acousto-optical modulator to actively switch light into (and out of) a resonator. This allows cavity ringdown spectroscopy (CRDS) to be implemented with broadband temporally incoherent light sources with low spectral power densities. The method is demonstrated for the first time using a broadband supercontinuum source. Best paper award OPTO 2011.

pf

link (url) [BibTex]

link (url) [BibTex]

2011


Thumb xl toc image
Quantum-Cascade Laser-Based Vibrational Circular Dichroism

Luedeke, S., Pfeifer, M., Fischer, P.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 133(15):5704-5707, 2011 (article)

Abstract
Vibrational circular dichroism (VCD) spectra were recorded with a tunable external-cavity quantum-cascade laser (QCL). In comparison with standard thermal light sources in the IR, QCLs provide orders of magnitude more power and are therefore promising for VCD studies in strongly absorbing solvents. The brightness of this novel light source is demonstrated with VCD and IR absorption measurements of a number of compounds, including proline in water.

pf

DOI [BibTex]

2011


DOI [BibTex]


Thumb xl toc image
Actively coupled cavity ringdown spectroscopy with low-power broadband sources

Petermann, C., Fischer, P.

OPTICS EXPRESS, 19(11):10164-10173, 2011 (article)

Abstract
We demonstrate a coupling scheme for cavity enhanced absorption spectroscopy that makes use of an intracavity acousto-optical modulator to actively switch light into (and out of) a resonator. This allows cavity ringdown spectroscopy (CRDS) to be implemented with broadband nonlaser light sources with spectral power densities of less than 30 mu W/nm. Although the acousto-optical element reduces the ultimate detection limit by introducing additional losses, it permits absorptivities to be measured with a high dynamic range, especially in lossy environments. Absorption measurements for the forbidden transition of gaseous oxygen in air at similar to 760nm are presented using a low-coherence cw-superluminescent diode. The same setup was electronically configured to cover absorption losses from 1.8 x 10(-8)cm(-1) to 7.5\% per roundtrip. This could be of interest in process analytical applications. (C) 2011 Optical Society of America

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control

Fischer, P., Ghosh, A.

NANOSCALE, 3(2):557-563, 2011 (article)

Abstract
Significant progress has been made in the fabrication of micron and sub-micron structures whose motion can be controlled in liquids under ambient conditions. The aim of many of these engineering endeavors is to be able to build and propel an artificial micro-structure that rivals the versatility of biological swimmers of similar size, e. g. motile bacterial cells. Applications for such artificial ``micro-bots'' are envisioned to range from microrheology to targeted drug delivery and microsurgery, and require full motion-control under ambient conditions. In this Mini-Review we discuss the construction, actuation, and operation of several devices that have recently been reported, especially systems that can be controlled by and propelled with homogenous magnetic fields. We describe the fabrication and associated experimental challenges and discuss potential applications.

pf

Video - Nanospropellers DOI [BibTex]


Thumb xl toc image
Weak value amplified optical activity measurements

Pfeifer, M., Fischer, P.

Opt. Express, 19(17):16508-16517, OSA, 2011 (article)

Abstract
We present a new form of optical activity measurement based on a modified weak value amplification scheme. It has recently been shown experimentally that the left- and right-circular polarization components refract with slightly different angles of refraction at a chiral interface causing a linearly polarized light beam to split into two. By introducing a polarization modulation that does not give rise to a change in the optical rotation it is possible to differentiate between the two circular polarization components even after post-selection with a linear polarizer. We show that such a modified weak value amplification measurement permits the sign of the splitting and thus the handedness of the optically active medium to be determined. Angular beam separations of Δθ ∼ 1 nanoradian, which corresponds to a circular birefringence of Δn ∼ 1 × 10−9, could be measured with a relative error of less than 1%.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2008


Thumb xl toc image
Voltage-Controllable Magnetic Composite Based on Multifunctional Polyethylene Microparticles

Ghosh, A., Sheridon, N. K., Fischer, P.

SMALL, 4(11):1956-1958, 2008 (article)

pf

DOI [BibTex]

2008



Thumb xl toc image
Nonlinear optical spectroscopy of chiral molecules

Fischer, P., Hache, F.

CHIRALITY, 17(8):421-437, 2005 (article)

Abstract
We review nonlinear optical processes that are specific to chiral molecules in solution and on surfaces. In contrast to conventional natural optical activity phenomena, which depend linearly on the electric field strength of the optical field, we discuss how optical processes that are nonlinear (quadratic, cubic, and quartic) functions of the electromagnetic field strength may probe optically active centers and chiral vibrations. We show that nonlinear techniques open entirely new ways of exploring chirality in chemical and biological systems: The cubic processes give rise to nonlinear circular dichroism and nonlinear optical rotation and make it possible to observe dynamic chiral processes at ultrafast time scales. The quadratic second-harmonic and sum-frequency-generation phenomena and the quartic processes may arise entirely in the electric-dipole approximation and do not require the use of circularly polarized light to detect chirality: They provide surface selectivity and their observables can be relatively much larger than in linear optical activity. These processes also give rise to the generation of light at a new color, and in liquids this frequency conversion only occurs if the solution is optically active. We survey recent chiral nonlinear optical experiments and give examples of their application to problems of biophysical interest. (C) 2005 Wiley-Liss, Inc.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
Negative refraction at optical frequencies in nonmagnetic two-component molecular media

Chen, Y., Fischer, P., Wise, F.

PHYSICAL REVIEW LETTERS, 95(6), 2005 (article)

Abstract
There is significant motivation to develop media with negative refractive indices at optical frequencies, but efforts in this direction are hampered by the weakness of the magnetic response at such frequencies. We show theoretically that a nonmagnetic medium with two atomic or molecular constituents can exhibit a negative refractive index. A negative index is possible even when the real parts of both the permittivity and permeability are positive. This surprising result provides a route to isotropic negative-index media at optical frequencies.

pf

DOI [BibTex]

DOI [BibTex]

2002


Thumb xl toc images
Chirality-specific nonlinear spectroscopies in isotropic media

Fischer, P., Albrecht, A.

BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 75(5):1119-1124, 2002, 10th International Conference on Time-Resolved Vibrational Spectroscopy (TRVS 2001), OKAZZAKI, JAPAN, MAY 21-25, 2001 (article)

Abstract
Sum or difference frequency generation (SFG or DFG) in isotropic media is in the electric-dipole approximation only symmetry allowed for optically active systems. The hyperpolarizability giving rise to these three-wave mixing processes features only one isotropic component. It factorizes into two terms, an energy (denominator) factor and a triple product of transition moments. These forbid degenerate SFG, i.e., second harmonic generation, as well as the existence of the linear electrooptic effect (Pockels effect) in isotropic media. This second order response also has no static limit, which leads to particularly strong resonance phenomena that are qualitatively different from those usually seen in the ubiquitous even-wave mixing spectroscopies. In particular, the participation of two (not the usual one) excited states is essential to achieve dramatic resonance enhancement, We report our first efforts to see such resonantly enhanced chirality specific SFG.

pf

DOI [BibTex]

2002


DOI [BibTex]


Thumb xl toc image
The chiral specificity of sum-frequency generation in solutions

Fischer, P., Beckwitt, K., Wise, F., Albrecht, A.

CHEMICAL PHYSICS LETTERS, 352(5-6):463-468, 2002 (article)

Abstract
Sum-frequency generation in isotropic media is in the electric-dipole approximation the only symmetry allowed for chiral systems. We demonstrate that the sum-frequency intensity from an optically active liquid depends quadratically on the difference in concentration of the two enantiomers. The dominant contribution to the signal is found to be due to the chirality specific electric-dipolar three-wave mixing nonlinearity. Selecting the polarization of all fields allows the chiral electric-dipolar contributions to the bulk sum-frequency signal to be discerned from any achiral magnetic-dipolar and electric-quadrupolar contributions. (C) 2002 Published by Elsevier Science B.V.

pf

DOI [BibTex]

DOI [BibTex]


Thumb xl toc image
On optical rectification in isotropic media

Fischer, P., Albrecht, A.

LASER PHYSICS, 12(8):1177-1181, 2002 (article)

Abstract
Coherent nonlinear optical processes at second-order are only electric-dipole allowed in isotropic media that are optically active. Sum-frequency generation in chiral liquids has recently been observed, and difference-frequency and optical rectification have been predicted to exist in isotropic chiral media. Both Rayleigh-Schrodinger perturbation theory and the density matrix approach are used to discuss the quantum-chemical basis of optical rectification in optically active liquids. For pinene we compute the corresponding orientationally averaged hyperpolarizability, and estimate the light-induced dc electric polarization and the consequent voltage across a measuring capacitor it may give rise to near resonance.

pf

[BibTex]

[BibTex]