Header logo is


2018


On the Integration of Optical Flow and Action Recognition
On the Integration of Optical Flow and Action Recognition

Sevilla-Lara, L., Liao, Y., Güney, F., Jampani, V., Geiger, A., Black, M. J.

In German Conference on Pattern Recognition (GCPR), LNCS 11269, pages: 281-297, Springer, Cham, October 2018 (inproceedings)

Abstract
Most of the top performing action recognition methods use optical flow as a "black box" input. Here we take a deeper look at the combination of flow and action recognition, and investigate why optical flow is helpful, what makes a flow method good for action recognition, and how we can make it better. In particular, we investigate the impact of different flow algorithms and input transformations to better understand how these affect a state-of-the-art action recognition method. Furthermore, we fine tune two neural-network flow methods end-to-end on the most widely used action recognition dataset (UCF101). Based on these experiments, we make the following five observations: 1) optical flow is useful for action recognition because it is invariant to appearance, 2) optical flow methods are optimized to minimize end-point-error (EPE), but the EPE of current methods is not well correlated with action recognition performance, 3) for the flow methods tested, accuracy at boundaries and at small displacements is most correlated with action recognition performance, 4) training optical flow to minimize classification error instead of minimizing EPE improves recognition performance, and 5) optical flow learned for the task of action recognition differs from traditional optical flow especially inside the human body and at the boundary of the body. These observations may encourage optical flow researchers to look beyond EPE as a goal and guide action recognition researchers to seek better motion cues, leading to a tighter integration of the optical flow and action recognition communities.

avg ps

arXiv DOI [BibTex]

2018


arXiv DOI [BibTex]


Towards Robust Visual Odometry with a Multi-Camera System
Towards Robust Visual Odometry with a Multi-Camera System

Liu, P., Geppert, M., Heng, L., Sattler, T., Geiger, A., Pollefeys, M.

In International Conference on Intelligent Robots and Systems (IROS) 2018, International Conference on Intelligent Robots and Systems, October 2018 (inproceedings)

Abstract
We present a visual odometry (VO) algorithm for a multi-camera system and robust operation in challenging environments. Our algorithm consists of a pose tracker and a local mapper. The tracker estimates the current pose by minimizing photometric errors between the most recent keyframe and the current frame. The mapper initializes the depths of all sampled feature points using plane-sweeping stereo. To reduce pose drift, a sliding window optimizer is used to refine poses and structure jointly. Our formulation is flexible enough to support an arbitrary number of stereo cameras. We evaluate our algorithm thoroughly on five datasets. The datasets were captured in different conditions: daytime, night-time with near-infrared (NIR) illumination and night-time without NIR illumination. Experimental results show that a multi-camera setup makes the VO more robust to challenging environments, especially night-time conditions, in which a single stereo configuration fails easily due to the lack of features.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Learning Priors for Semantic 3D Reconstruction
Learning Priors for Semantic 3D Reconstruction

Cherabier, I., Schönberger, J., Oswald, M., Pollefeys, M., Geiger, A.

In Computer Vision – ECCV 2018, Springer International Publishing, Cham, September 2018 (inproceedings)

Abstract
We present a novel semantic 3D reconstruction framework which embeds variational regularization into a neural network. Our network performs a fixed number of unrolled multi-scale optimization iterations with shared interaction weights. In contrast to existing variational methods for semantic 3D reconstruction, our model is end-to-end trainable and captures more complex dependencies between the semantic labels and the 3D geometry. Compared to previous learning-based approaches to 3D reconstruction, we integrate powerful long-range dependencies using variational coarse-to-fine optimization. As a result, our network architecture requires only a moderate number of parameters while keeping a high level of expressiveness which enables learning from very little data. Experiments on real and synthetic datasets demonstrate that our network achieves higher accuracy compared to a purely variational approach while at the same time requiring two orders of magnitude less iterations to converge. Moreover, our approach handles ten times more semantic class labels using the same computational resources.

avg

pdf suppmat Project Page Video DOI Project Page [BibTex]

pdf suppmat Project Page Video DOI Project Page [BibTex]


Unsupervised Learning of Multi-Frame Optical Flow with Occlusions
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

Janai, J., Güney, F., Ranjan, A., Black, M. J., Geiger, A.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol 11220, pages: 713-731, Springer, Cham, September 2018 (inproceedings)

avg ps

pdf suppmat Video Project Page DOI Project Page [BibTex]

pdf suppmat Video Project Page DOI Project Page [BibTex]


SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images
SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images

Coors, B., Condurache, A. P., Geiger, A.

European Conference on Computer Vision (ECCV), September 2018 (conference)

Abstract
Omnidirectional cameras offer great benefits over classical cameras wherever a wide field of view is essential, such as in virtual reality applications or in autonomous robots. Unfortunately, standard convolutional neural networks are not well suited for this scenario as the natural projection surface is a sphere which cannot be unwrapped to a plane without introducing significant distortions, particularly in the polar regions. In this work, we present SphereNet, a novel deep learning framework which encodes invariance against such distortions explicitly into convolutional neural networks. Towards this goal, SphereNet adapts the sampling locations of the convolutional filters, effectively reversing distortions, and wraps the filters around the sphere. By building on regular convolutions, SphereNet enables the transfer of existing perspective convolutional neural network models to the omnidirectional case. We demonstrate the effectiveness of our method on the tasks of image classification and object detection, exploiting two newly created semi-synthetic and real-world omnidirectional datasets.

avg

pdf suppmat Project Page [BibTex]


Probabilistic Recurrent State-Space Models
Probabilistic Recurrent State-Space Models

Doerr, A., Daniel, C., Schiegg, M., Nguyen-Tuong, D., Schaal, S., Toussaint, M., Trimpe, S.

In Proceedings of the International Conference on Machine Learning (ICML), International Conference on Machine Learning (ICML), July 2018 (inproceedings)

Abstract
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g., LSTMs) proved extremely successful in modeling complex time-series data. Fully probabilistic SSMs, however, unfortunately often prove hard to train, even for smaller problems. To overcome this limitation, we propose a scalable initialization and training algorithm based on doubly stochastic variational inference and Gaussian processes. In the variational approximation we propose in contrast to related approaches to fully capture the latent state temporal correlations to allow for robust training.

am ics

arXiv pdf Project Page [BibTex]

arXiv pdf Project Page [BibTex]


Robust Dense Mapping for Large-Scale Dynamic Environments
Robust Dense Mapping for Large-Scale Dynamic Environments

Barsan, I. A., Liu, P., Pollefeys, M., Geiger, A.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

Abstract
We present a stereo-based dense mapping algorithm for large-scale dynamic urban environments. In contrast to other existing methods, we simultaneously reconstruct the static background, the moving objects, and the potentially moving but currently stationary objects separately, which is desirable for high-level mobile robotic tasks such as path planning in crowded environments. We use both instance-aware semantic segmentation and sparse scene flow to classify objects as either background, moving, or potentially moving, thereby ensuring that the system is able to model objects with the potential to transition from static to dynamic, such as parked cars. Given camera poses estimated from visual odometry, both the background and the (potentially) moving objects are reconstructed separately by fusing the depth maps computed from the stereo input. In addition to visual odometry, sparse scene flow is also used to estimate the 3D motions of the detected moving objects, in order to reconstruct them accurately. A map pruning technique is further developed to improve reconstruction accuracy and reduce memory consumption, leading to increased scalability. We evaluate our system thoroughly on the well-known KITTI dataset. Our system is capable of running on a PC at approximately 2.5Hz, with the primary bottleneck being the instance-aware semantic segmentation, which is a limitation we hope to address in future work.

avg

pdf Video Project Page Project Page [BibTex]

pdf Video Project Page Project Page [BibTex]


Online Learning of a Memory for Learning Rates
Online Learning of a Memory for Learning Rates

(nominated for best paper award)

Meier, F., Kappler, D., Schaal, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018, accepted (inproceedings)

Abstract
The promise of learning to learn for robotics rests on the hope that by extracting some information about the learning process itself we can speed up subsequent similar learning tasks. Here, we introduce a computationally efficient online meta-learning algorithm that builds and optimizes a memory model of the optimal learning rate landscape from previously observed gradient behaviors. While performing task specific optimization, this memory of learning rates predicts how to scale currently observed gradients. After applying the gradient scaling our meta-learner updates its internal memory based on the observed effect its prediction had. Our meta-learner can be combined with any gradient-based optimizer, learns on the fly and can be transferred to new optimization tasks. In our evaluations we show that our meta-learning algorithm speeds up learning of MNIST classification and a variety of learning control tasks, either in batch or online learning settings.

am

pdf video code [BibTex]

pdf video code [BibTex]


Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks
Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks

Sutanto, G., Su, Z., Schaal, S., Meier, F.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

am

pdf video [BibTex]

pdf video [BibTex]


RayNet: Learning Volumetric 3D Reconstruction with Ray Potentials
RayNet: Learning Volumetric 3D Reconstruction with Ray Potentials

Paschalidou, D., Ulusoy, A. O., Schmitt, C., Gool, L., Geiger, A.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
In this paper, we consider the problem of reconstructing a dense 3D model using images captured from different views. Recent methods based on convolutional neural networks (CNN) allow learning the entire task from data. However, they do not incorporate the physics of image formation such as perspective geometry and occlusion. Instead, classical approaches based on Markov Random Fields (MRF) with ray-potentials explicitly model these physical processes, but they cannot cope with large surface appearance variations across different viewpoints. In this paper, we propose RayNet, which combines the strengths of both frameworks. RayNet integrates a CNN that learns view-invariant feature representations with an MRF that explicitly encodes the physics of perspective projection and occlusion. We train RayNet end-to-end using empirical risk minimization. We thoroughly evaluate our approach on challenging real-world datasets and demonstrate its benefits over a piece-wise trained baseline, hand-crafted models as well as other learning-based approaches.

avg

pdf suppmat Video Project Page code Poster Project Page [BibTex]

pdf suppmat Video Project Page code Poster Project Page [BibTex]


no image
On Time Optimization of Centroidal Momentum Dynamics

Ponton, B., Herzog, A., Del Prete, A., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 5776-5782, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing † †Implementation details and demos can be found in the source code available at https://git-amd.tuebingen.mpg.de/bponton/timeoptimization.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Enhanced Non-Steady Gliding Performance of the MultiMo-Bat through Optimal Airfoil Configuration and Control Strategy

Kim, H., Woodward, M. A., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1382-1388, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


Deep Marching Cubes: Learning Explicit Surface Representations
Deep Marching Cubes: Learning Explicit Surface Representations

Liao, Y., Donne, S., Geiger, A.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
Existing learning based solutions to 3D surface prediction cannot be trained end-to-end as they operate on intermediate representations (eg, TSDF) from which 3D surface meshes must be extracted in a post-processing step (eg, via the marching cubes algorithm). In this paper, we investigate the problem of end-to-end 3D surface prediction. We first demonstrate that the marching cubes algorithm is not differentiable and propose an alternative differentiable formulation which we insert as a final layer into a 3D convolutional neural network. We further propose a set of loss functions which allow for training our model with sparse point supervision. Our experiments demonstrate that the model allows for predicting sub-voxel accurate 3D shapes of arbitrary topology. Additionally, it learns to complete shapes and to separate an object's inside from its outside even in the presence of sparse and incomplete ground truth. We investigate the benefits of our approach on the task of inferring shapes from 3D point clouds. Our model is flexible and can be combined with a variety of shape encoder and shape inference techniques.

avg

pdf suppmat Video Project Page Poster Project Page [BibTex]

pdf suppmat Video Project Page Poster Project Page [BibTex]


Semantic Visual Localization
Semantic Visual Localization

Schönberger, J., Pollefeys, M., Geiger, A., Sattler, T.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
Robust visual localization under a wide range of viewing conditions is a fundamental problem in computer vision. Handling the difficult cases of this problem is not only very challenging but also of high practical relevance, eg, in the context of life-long localization for augmented reality or autonomous robots. In this paper, we propose a novel approach based on a joint 3D geometric and semantic understanding of the world, enabling it to succeed under conditions where previous approaches failed. Our method leverages a novel generative model for descriptor learning, trained on semantic scene completion as an auxiliary task. The resulting 3D descriptors are robust to missing observations by encoding high-level 3D geometric and semantic information. Experiments on several challenging large-scale localization datasets demonstrate reliable localization under extreme viewpoint, illumination, and geometry changes.

avg

pdf suppmat Poster Project Page [BibTex]

pdf suppmat Poster Project Page [BibTex]


Which Training Methods for GANs do actually Converge?
Which Training Methods for GANs do actually Converge?

Mescheder, L., Geiger, A., Nowozin, S.

International Conference on Machine learning (ICML), 2018 (conference)

Abstract
Recent work has shown local convergence of GAN training for absolutely continuous data and generator distributions. In this paper, we show that the requirement of absolute continuity is necessary: we describe a simple yet prototypical counterexample showing that in the more realistic case of distributions that are not absolutely continuous, unregularized GAN training is not always convergent. Furthermore, we discuss regularization strategies that were recently proposed to stabilize GAN training. Our analysis shows that GAN training with instance noise or zero-centered gradient penalties converges. On the other hand, we show that Wasserstein-GANs and WGAN-GP with a finite number of discriminator updates per generator update do not always converge to the equilibrium point. We discuss these results, leading us to a new explanation for the stability problems of GAN training. Based on our analysis, we extend our convergence results to more general GANs and prove local convergence for simplified gradient penalties even if the generator and data distributions lie on lower dimensional manifolds. We find these penalties to work well in practice and use them to learn high-resolution generative image models for a variety of datasets with little hyperparameter tuning.

avg

code video paper supplement slides poster Project Page [BibTex]


no image
Collectives of Spinning Mobile Microrobots for Navigation and Object Manipulation at the Air-Water Interface

Wang, W., Kishore, V., Koens, L., Lauga, E., Sitti, M.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages: 1-9, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


Learning 3D Shape Completion from Laser Scan Data with Weak Supervision
Learning 3D Shape Completion from Laser Scan Data with Weak Supervision

Stutz, D., Geiger, A.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
3D shape completion from partial point clouds is a fundamental problem in computer vision and computer graphics. Recent approaches can be characterized as either data-driven or learning-based. Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations. Learning-based approaches, in contrast, avoid the expensive optimization step and instead directly predict the complete shape from the incomplete observations using deep neural networks. However, full supervision is required which is often not available in practice. In this work, we propose a weakly-supervised learning-based approach to 3D shape completion which neither requires slow optimization nor direct supervision. While we also learn a shape prior on synthetic data, we amortize, ie, learn, maximum likelihood fitting using deep neural networks resulting in efficient shape completion without sacrificing accuracy. Tackling 3D shape completion of cars on ShapeNet and KITTI, we demonstrate that the proposed amortized maximum likelihood approach is able to compete with a fully supervised baseline and a state-of-the-art data-driven approach while being significantly faster. On ModelNet, we additionally show that the approach is able to generalize to other object categories as well.

avg

pdf suppmat Project Page Poster Project Page [BibTex]

pdf suppmat Project Page Poster Project Page [BibTex]


no image
Endo-VMFuseNet: A Deep Visual-Magnetic Sensor Fusion Approach for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Gilbert, H. B., Sari, A. E., Soylu, U., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-7, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Endosensorfusion: Particle filtering-based multi-sensory data fusion with switching state-space model for endoscopic capsule robots

Turan, M., Almalioglu, Y., Gilbert, H., Araujo, H., Cemgil, T., Sitti, M.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1-8, 2018 (inproceedings)

pi

[BibTex]

[BibTex]


Learning Transformation Invariant Representations with Weak Supervision
Learning Transformation Invariant Representations with Weak Supervision

Coors, B., Condurache, A., Mertins, A., Geiger, A.

In International Conference on Computer Vision Theory and Applications, International Conference on Computer Vision Theory and Applications, 2018 (inproceedings)

Abstract
Deep convolutional neural networks are the current state-of-the-art solution to many computer vision tasks. However, their ability to handle large global and local image transformations is limited. Consequently, extensive data augmentation is often utilized to incorporate prior knowledge about desired invariances to geometric transformations such as rotations or scale changes. In this work, we combine data augmentation with an unsupervised loss which enforces similarity between the predictions of augmented copies of an input sample. Our loss acts as an effective regularizer which facilitates the learning of transformation invariant representations. We investigate the effectiveness of the proposed similarity loss on rotated MNIST and the German Traffic Sign Recognition Benchmark (GTSRB) in the context of different classification models including ladder networks. Our experiments demonstrate improvements with respect to the standard data augmentation approach for supervised and semi-supervised learning tasks, in particular in the presence of little annotated data. In addition, we analyze the performance of the proposed approach with respect to its hyperparameters, including the strength of the regularization as well as the layer where representation similarity is enforced.

avg

pdf [BibTex]

pdf [BibTex]


no image
Unsupervised Contact Learning for Humanoid Estimation and Control

Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 411-417, IEEE, Brisbane, Australia, 2018 (inproceedings)

Abstract
This work presents a method for contact state estimation using fuzzy clustering to learn contact probability for full, six-dimensional humanoid contacts. The data required for training is solely from proprioceptive sensors - endeffector contact wrench sensors and inertial measurement units (IMUs) - and the method is completely unsupervised. The resulting cluster means are used to efficiently compute the probability of contact in each of the six endeffector degrees of freedom (DoFs) independently. This clustering-based contact probability estimator is validated in a kinematics-based base state estimator in a simulation environment with realistic added sensor noise for locomotion over rough, low-friction terrain on which the robot is subject to foot slip and rotation. The proposed base state estimator which utilizes these six DoF contact probability estimates is shown to perform considerably better than that which determines kinematic contact constraints purely based on measured normal force.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task-Specific Dynamics to Improve Whole-Body Control

Gams, A., Mason, S., Ude, A., Schaal, S., Righetti, L.

In Hua, IEEE, Beijing, China, November 2018 (inproceedings)

Abstract
In task-based inverse dynamics control, reference accelerations used to follow a desired plan can be broken down into feedforward and feedback trajectories. The feedback term accounts for tracking errors that are caused from inaccurate dynamic models or external disturbances. On underactuated, free-floating robots, such as humanoids, high feedback terms can be used to improve tracking accuracy; however, this can lead to very stiff behavior or poor tracking accuracy due to limited control bandwidth. In this paper, we show how to reduce the required contribution of the feedback controller by incorporating learned task-space reference accelerations. Thus, we i) improve the execution of the given specific task, and ii) offer the means to reduce feedback gains, providing for greater compliance of the system. With a systematic approach we also reduce heuristic tuning of the model parameters and feedback gains, often present in real-world experiments. In contrast to learning task-specific joint-torques, which might produce a similar effect but can lead to poor generalization, our approach directly learns the task-space dynamics of the center of mass of a humanoid robot. Simulated and real-world results on the lower part of the Sarcos Hermes humanoid robot demonstrate the applicability of the approach.

am mg

link (url) [BibTex]

link (url) [BibTex]


no image
An MPC Walking Framework With External Contact Forces

Mason, S., Rotella, N., Schaal, S., Righetti, L.

In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages: 1785-1790, IEEE, Brisbane, Australia, May 2018 (inproceedings)

Abstract
In this work, we present an extension to a linear Model Predictive Control (MPC) scheme that plans external contact forces for the robot when given multiple contact locations and their corresponding friction cone. To this end, we set up a two-step optimization problem. In the first optimization, we compute the Center of Mass (CoM) trajectory, foot step locations, and introduce slack variables to account for violating the imposed constraints on the Zero Moment Point (ZMP). We then use the slack variables to trigger the second optimization, in which we calculate the optimal external force that compensates for the ZMP tracking error. This optimization considers multiple contacts positions within the environment by formulating the problem as a Mixed Integer Quadratic Program (MIQP) that can be solved at a speed between 100-300 Hz. Once contact is created, the MIQP reduces to a single Quadratic Program (QP) that can be solved in real-time ({\textless}; 1kHz). Simulations show that the presented walking control scheme can withstand disturbances 2-3× larger with the additional force provided by a hand contact.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2009


no image
Characterization of bacterial actuation of micro-objects

Behkam, B., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1022-1027, 2009 (inproceedings)

pi

[BibTex]

2009


[BibTex]


no image
Compliant footpad design analysis for a bio-inspired quadruped amphibious robot

Park, H. S., Sitti, M.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 645-651, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Path integral-based stochastic optimal control for rigid body dynamics

Theodorou, E. A., Buchli, J., Schaal, S.

In Adaptive Dynamic Programming and Reinforcement Learning, 2009. ADPRL ’09. IEEE Symposium on, pages: 219-225, 2009, clmc (inproceedings)

Abstract
Recent advances on path integral stochastic optimal control [1],[2] provide new insights in the optimal control of nonlinear stochastic systems which are linear in the controls, with state independent and time invariant control transition matrix. Under these assumptions, the Hamilton-Jacobi-Bellman (HJB) equation is formulated and linearized with the use of the logarithmic transformation of the optimal value function. The resulting HJB is a linear second order partial differential equation which is solved by an approximation based on the Feynman-Kac formula [3]. In this work we review the theory of path integral control and derive the linearized HJB equation for systems with state dependent control transition matrix. In addition we derive the path integral formulation for the general class of systems with state dimensionality that is higher than the dimensionality of the controls. Furthermore, by means of a modified inverse dynamics controller, we apply path integral stochastic optimal control over the new control space. Simulations illustrate the theoretical results. Future developments and extensions are discussed.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning locomotion over rough terrain using terrain templates

Kalakrishnan, M., Buchli, J., Pastor, P., Schaal, S.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 167-172, 2009, clmc (inproceedings)

Abstract
We address the problem of foothold selection in robotic legged locomotion over very rough terrain. The difficulty of the problem we address here is comparable to that of human rock-climbing, where foot/hand-hold selection is one of the most critical aspects. Previous work in this domain typically involves defining a reward function over footholds as a weighted linear combination of terrain features. However, a significant amount of effort needs to be spent in designing these features in order to model more complex decision functions, and hand-tuning their weights is not a trivial task. We propose the use of terrain templates, which are discretized height maps of the terrain under a foothold on different length scales, as an alternative to manually designed features. We describe an algorithm that can simultaneously learn a small set of templates and a foothold ranking function using these templates, from expert-demonstrated footholds. Using the LittleDog quadruped robot, we experimentally show that the use of terrain templates can produce complex ranking functions with higher performance than standard terrain features, and improved generalization to unseen terrain.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
CESAR: A lunar crater exploration and sample return robot

Schwendner, J., Grimminger, F., Bartsch, S., Kaupisch, T., Yüksel, M., Bresser, A., Akpo, J. B., Seydel, M. K. -., Dieterle, A., Schmidt, S., Kirchner, F.

In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 3355-3360, October 2009 (inproceedings)

am

DOI [BibTex]

DOI [BibTex]


no image
Concept Evaluation of a New Biologically Inspired Robot “Littleape”

Kühn, D., Römmermann, M., Sauthoff, N., Grimminger, F., Kirchner, F.

In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 589–594, IROS’09, IEEE Press, 2009 (inproceedings)

am

DOI [BibTex]

DOI [BibTex]


no image
A novel artificial hair receptor based on aligned PVDF micro/nano fibers

Weiting, Liu, Bilsay, Sumer, Cesare, Stefanini, Arianna, Menciassi, Fei, Li, Dajing, Chen, Paolo, Dario, Metin, Sitti, Xin, Fu

In Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on, pages: 49-54, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Waalbot: Agile climbing with synthetic fibrillar dry adhesives

Murphy, M. P., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1599-1600, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Compact models of motor primitive variations for predictible reaching and obstacle avoidance

Stulp, F., Oztop, E., Pastor, P., Beetz, M., Schaal, S.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009), Paris, Dec.7-10, 2009, clmc (inproceedings)

Abstract
over and over again. This regularity allows humans and robots to reuse existing solutions for known recurring tasks. We expect that reusing a set of standard solutions to solve similar tasks will facilitate the design and on-line adaptation of the control systems of robots operating in human environments. In this paper, we derive a set of standard solutions for reaching behavior from human motion data. We also derive stereotypical reaching trajectories for variations of the task, in which obstacles are present. These stereotypical trajectories are then compactly represented with Dynamic Movement Primitives. On the humanoid robot Sarcos CB, this approach leads to reproducible, predictable, and human-like reaching motions.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Human optimization strategies under reward feedback

Hoffmann, H., Theodorou, E., Schaal, S.

In Abstracts of Neural Control of Movement Conference (NCM 2009), Waikoloa, Hawaii, 2009, 2009, clmc (inproceedings)

Abstract
Many hypothesis on human movement generation have been cast into an optimization framework, implying that movements are adapted to optimize a single quantity, like, e.g., jerk, end-point variance, or control cost. However, we still do not understand how humans actually learn when given only a cost or reward feedback at the end of a movement. Such a reinforcement learning setting has been extensively explored theoretically in engineering and computer science, but in human movement control, hardly any experiment studied movement learning under reward feedback. We present experiments probing which computational strategies humans use to optimize a movement under a continuous reward function. We present two experimental paradigms. The first paradigm mimics a ball-hitting task. Subjects (n=12) sat in front of a computer screen and moved a stylus on a tablet towards an unknown target. This target was located on a line that the subjects had to cross. During the movement, visual feedback was suppressed. After the movement, a reward was displayed graphically as a colored bar. As reward, we used a Gaussian function of the distance between the target location and the point of line crossing. We chose such a function since in sensorimotor tasks, the cost or loss function that humans seem to represent is close to an inverted Gaussian function (Koerding and Wolpert 2004). The second paradigm mimics pocket billiards. On the same experimental setup as above, the computer screen displayed a pocket (two bars), a white disk, and a green disk. The goal was to hit with the white disk the green disk (as in a billiard collision), such that the green disk moved into the pocket. Subjects (n=8) manipulated with the stylus the white disk to effectively choose start point and movement direction. Reward feedback was implicitly given as hitting or missing the pocket with the green disk. In both paradigms, subjects increased the average reward over trials. The surprising result was that in these experiments, humans seem to prefer a strategy that uses a reward-weighted average over previous movements instead of gradient ascent. The literature on reinforcement learning is dominated by gradient-ascent methods. However, our computer simulations and theoretical analysis revealed that reward-weighted averaging is the more robust choice given the amount of movement variance observed in humans. Apparently, humans choose an optimization strategy that is suitable for their own movement variance.

am

[BibTex]

[BibTex]


no image
Concept evaluation of a new biologically inspired robot “LittleApe”

Kühn, D., Römmermann, M., Sauthoff, N., Grimminger, F., Kirchner, F.

In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 589-594, October 2009 (inproceedings)

am

DOI [BibTex]

DOI [BibTex]


no image
Piezoelectric ultrasonic resonant micromotor with a volume of less than 1 mm 3 for use in medical microbots

Watson, B., Friend, J., Yeo, L., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2225-2230, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Dynamic modeling and analysis of pitch motion of a basilisk lizard inspired quadruped robot running on water

Park, H. S., Floyd, S., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2655-2660, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Proprioceptive control of a hybrid legged-wheeled robot

Eich, M., Grimminger, F., Kirchner, F.

In 2008 IEEE International Conference on Robotics and Biomimetics, pages: 774-779, February 2009 (inproceedings)

am

DOI [BibTex]

DOI [BibTex]


no image
A miniature ceiling walking robot with flat tacky elastomeric footpads

Unver, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2276-2281, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Learning and generalization of motor skills by learning from demonstration

Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.

In International Conference on Robotics and Automation (ICRA2009), Kobe, Japan, May 12-19, 2009, 2009, clmc (inproceedings)

Abstract
We provide a general approach for learning robotic motor skills from human demonstration. To represent an observed movement, a non-linear differential equation is learned such that it reproduces this movement. Based on this representation, we build a library of movements by labeling each recorded movement according to task and context (e.g., grasping, placing, and releasing). Our differential equation is formulated such that generalization can be achieved simply by adapting a start and a goal parameter in the equation to the desired position values of a movement. For object manipulation, we present how our framework extends to the control of gripper orientation and finger position. The feasibility of our approach is demonstrated in simulation as well as on a real robot. The robot learned a pick-and-place operation and a water-serving task and could generalize these tasks to novel situations.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Compliant quadruped locomotion over rough terrain

Buchli, J., Kalakrishnan, M., Mistry, M., Pastor, P., Schaal, S.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 814-820, 2009, clmc (inproceedings)

Abstract
Many critical elements for statically stable walking for legged robots have been known for a long time, including stability criteria based on support polygons, good foothold selection, recovery strategies to name a few. All these criteria have to be accounted for in the planning as well as the control phase. Most legged robots usually employ high gain position control, which means that it is crucially important that the planned reference trajectories are a good match for the actual terrain, and that tracking is accurate. Such an approach leads to conservative controllers, i.e. relatively low speed, ground speed matching, etc. Not surprisingly such controllers are not very robust - they are not suited for the real world use outside of the laboratory where the knowledge of the world is limited and error prone. Thus, to achieve robust robotic locomotion in the archetypical domain of legged systems, namely complex rough terrain, where the size of the obstacles are in the order of leg length, additional elements are required. A possible solution to improve the robustness of legged locomotion is to maximize the compliance of the controller. While compliance is trivially achieved by reduced feedback gains, for terrain requiring precise foot placement (e.g. climbing rocks, walking over pegs or cracks) compliance cannot be introduced at the cost of inferior tracking. Thus, model-based control and - in contrast to passive dynamic walkers - active balance control is required. To achieve these objectives, in this paper we add two crucial elements to legged locomotion, i.e., floating-base inverse dynamics control and predictive force control, and we show that these elements increase robustness in face of unknown and unanticipated perturbations (e.g. obstacles). Furthermore, we introduce a novel line-based COG trajectory planner, which yields a simpler algorithm than traditional polygon based methods and creates the appropriate input to our control system.We show results from bot- h simulation and real world of a robotic dog walking over non-perceived obstacles and rocky terrain. The results prove the effectivity of the inverse dynamics/force controller. The presented results show that we have all elements needed for robust all-terrain locomotion, which should also generalize to other legged systems, e.g., humanoid robots.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Tankbot: A miniature, peeling based climber on rough and smooth surfaces

Unver, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 2282-2287, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Automated 2-D nanoparticle manipulation with an atomic force microscope

Onal, C. D., Ozcan, O., Sitti, M.

In Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pages: 1814-1819, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Microparticle manipulation using multiple untethered magnetic micro-robots on an electrostatic surface

Floyd, S., Pawashe, C., Sitti, M.

In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages: 528-533, 2009 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Inertial parameter estimation of floating-base humanoid systems using partial force sensing

Mistry, M., Schaal, S., Yamane, K.

In IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009), Paris, Dec.7-10, 2009, clmc (inproceedings)

Abstract
Recently, several controllers have been proposed for humanoid robots which rely on full-body dynamic models. The estimation of inertial parameters from data is a critical component for obtaining accurate models for control. However, floating base systems, such as humanoid robots, incur added challenges to this task (e.g. contact forces must be measured, contact states can change, etc.) In this work, we outline a theoretical framework for whole body inertial parameter estimation, including the unactuated floating base. Using a least squares minimization approach, conducted within the nullspace of unmeasured degrees of freedom, we are able to use a partial force sensor set for full-body estimation, e.g. using only joint torque sensors, allowing for estimation when contact force measurement is unavailable or unreliable (e.g. due to slipping, rolling contacts, etc.). We also propose how to determine the theoretical minimum force sensor set for full body estimation, and discuss the practical limitations of doing so.

am

link (url) [BibTex]

link (url) [BibTex]

1999


no image
Tele-touch feedback of surfaces at the micro/nano scale: Modeling and experiments

Sitti, M., Horighuchi, S., Hashimoto, H.

In Intelligent Robots and Systems, 1999. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on, 2, pages: 882-888, 1999 (inproceedings)

pi

[BibTex]

1999


[BibTex]


no image
Challenge to micro/nanomanipulation using atomic force microscope

Hashimoto, H., Sitti, M.

In Micromechatronics and Human Science, 1999. MHS’99. Proceedings of 1999 International Symposium on, pages: 35-42, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Visualization interface for AFM-based nano-manipulation

Horiguchi, S., Sitti, M., Hashimoto, H.

In Industrial Electronics, 1999. ISIE’99. Proceedings of the IEEE International Symposium on, 1, pages: 310-315, 1999 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Tele-nanorobotics 2-d manipulation of micro/nanoparticles using afm

Sitti, M., Horiguchi, S., Hashimoto, H.

In Advanced Intelligent Mechatronics, 1999. Proceedings. 1999 IEEE/ASME International Conference on, pages: 786-786, 1999 (inproceedings)

pi

[BibTex]

[BibTex]