Header logo is


2001


no image
Regularized principal manifolds

Smola, A., Mika, S., Schölkopf, B., Williamson, R.

Journal of Machine Learning Research, 1, pages: 179-209, June 2001 (article)

Abstract
Many settings of unsupervised learning can be viewed as quantization problems - the minimization of the expected quantization error subject to some restrictions. This allows the use of tools such as regularization from the theory of (supervised) risk minimization for unsupervised learning. This setting turns out to be closely related to principal curves, the generative topographic map, and robust coding. We explore this connection in two ways: (1) we propose an algorithm for finding principal manifolds that can be regularized in a variety of ways; and (2) we derive uniform convergence bounds and hence bounds on the learning rates of the algorithm. In particular, we give bounds on the covering numbers which allows us to obtain nearly optimal learning rates for certain types of regularization operators. Experimental results demonstrate the feasibility of the approach.

ei

PDF [BibTex]

2001


PDF [BibTex]


no image
Variationsverfahren zur Untersuchung von Grundzustandseigenschaften des Ein-Band Hubbard-Modells

Eichhorn, J.

Biologische Kybernetik, Technische Universität Dresden, Dresden/Germany, May 2001 (diplomathesis)

Abstract
Using different modifications of a new variational approach, statical groundstate properties of the one-band Hubbard model such as energy and staggered magnetisation are calculated. By taking into account additional fluctuations, the method ist gradually improved so that a very good description of the energy in one and two dimensions can be achieved. After a detailed discussion of the application in one dimension, extensions for two dimensions are introduced. By use of a modified version of the variational ansatz in particular a description of the quantum phase transition for the magnetisation should be possible.

ei

PostScript [BibTex]

PostScript [BibTex]


no image
The psychometric function: II. Bootstrap-based confidence intervals and sampling

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1314-1329, 2001 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
The psychometric function: I. Fitting, sampling and goodness-of-fit

Wichmann, F., Hill, N.

Perception and Psychophysics, 63 (8), pages: 1293-1313, 2001 (article)

Abstract
The psychometric function relates an observer'sperformance to an independent variable, usually some physical quantity of a stimulus in a psychophysical task. This paper, together with its companion paper (Wichmann & Hill, 2001), describes an integrated approach to (1) fitting psychometric functions, (2) assessing the goodness of fit, and (3) providing confidence intervals for the function'sparameters and other estimates derived from them, for the purposes of hypothesis testing. The present paper deals with the first two topics, describing a constrained maximum-likelihood method of parameter estimation and developing several goodness-of-fit tests. Using Monte Carlo simulations, we deal with two specific difficulties that arise when fitting functions to psychophysical data. First, we note that human observers are prone to stimulus-independent errors (or lapses ). We show that failure to account for this can lead to serious biases in estimates of the psychometric function'sparameters and illustrate how the problem may be overcome. Second, we note that psychophysical data sets are usually rather small by the standards required by most of the commonly applied statistical tests. We demonstrate the potential errors of applying traditional X^2 methods to psychophysical data and advocate use of Monte Carlo resampling techniques that do not rely on asymptotic theory. We have made available the software to implement our methods

ei

PDF [BibTex]

PDF [BibTex]


no image
Unsupervised Segmentation and Classification of Mixtures of Markovian Sources

Seldin, Y., Bejerano, G., Tishby, N.

In The 33rd Symposium on the Interface of Computing Science and Statistics (Interface 2001 - Frontiers in Data Mining and Bioinformatics), pages: 1-15, 33rd Symposium on the Interface of Computing Science and Statistics (Interface - Frontiers in Data Mining and Bioinformatics), 2001 (inproceedings)

Abstract
We describe a novel algorithm for unsupervised segmentation of sequences into alternating Variable Memory Markov sources, first presented in [SBT01]. The algorithm is based on competitive learning between Markov models, when implemented as Prediction Suffix Trees [RST96] using the MDL principle. By applying a model clustering procedure, based on rate distortion theory combined with deterministic annealing, we obtain a hierarchical segmentation of sequences between alternating Markov sources. The method is applied successfully to unsupervised segmentation of multilingual texts into languages where it is able to infer correctly both the number of languages and the language switching points. When applied to protein sequence families (results of the [BSMT01] work), we demonstrate the method‘s ability to identify biologically meaningful sub-sequences within the proteins, which correspond to signatures of important functional sub-units called domains. Our approach to proteins classification (through the obtained signatures) is shown to have both conceptual and practical advantages over the currently used methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Markovian domain fingerprinting: statistical segmentation of protein sequences

Bejerano, G., Seldin, Y., Margalit, H., Tishby, N.

Bioinformatics, 17(10):927-934, 2001 (article)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Unsupervised Sequence Segmentation by a Mixture of Switching Variable Memory Markov Sources

Seldin, Y., Bejerano, G., Tishby, N.

In In the proceeding of the 18th International Conference on Machine Learning (ICML 2001), pages: 513-520, 18th International Conference on Machine Learning (ICML), 2001 (inproceedings)

Abstract
We present a novel information theoretic algorithm for unsupervised segmentation of sequences into alternating Variable Memory Markov sources. The algorithm is based on competitive learning between Markov models, when implemented as Prediction Suffix Trees (Ron et al., 1996) using the MDL principle. By applying a model clustering procedure, based on rate distortion theory combined with deterministic annealing, we obtain a hierarchical segmentation of sequences between alternating Markov sources. The algorithm seems to be self regulated and automatically avoids over segmentation. The method is applied successfully to unsupervised segmentation of multilingual texts into languages where it is able to infer correctly both the number of languages and the language switching points. When applied to protein sequence families, we demonstrate the method‘s ability to identify biologically meaningful sub-sequences within the proteins, which correspond to important functional sub-units called domains.

ei

PDF [BibTex]

PDF [BibTex]


no image
Inference Principles and Model Selection

Buhmann, J., Schölkopf, B.

(01301), Dagstuhl Seminar, 2001 (techreport)

ei

Web [BibTex]

Web [BibTex]


no image
Survey of nanomanipulation systems

Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 75-80, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Nanotribological characterization system by AFM based controlled pushing

Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 99-104, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Towards flapping wing control for a micromechanical flying insect

Yan, J., Wood, R. J., Avadhanula, S., Sitti, M., Fearing, R. S.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3901-3908, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Man-machine interface for micro/nano manipulation with an afm probe

Aruk, B., Hashimoto, H., Sitti, M.

In Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, pages: 151-156, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms

Sitti, M., Campolo, D., Yan, J., Fearing, R. S.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3839-3846, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Thorax Design and Wing Control for a Micromechanical Flying Insect

Yan, J, Ayadhanula, S, Sitti, M, Wood, RJ, Fearing, RS

In PROCEEDINGS OF THE ANNUAL ALLERTON CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING, 39(2):952-961, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
PZT actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax

Sitti, M.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 4, pages: 3893-3900, 2001 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Wing transmission for a micromechanical flying insect

Yan, J., Avadhanula, S., Birch, J., Dickinson, M., Sitti, M., Su, T., Fearing, R.

Journal of Micromechatronics, 1(3):221-237, Brill, 2001 (article)

pi

[BibTex]

[BibTex]


no image
Development of a scaled teleoperation system for nano scale interaction and manipulation

Sitti, M., Aruk, B., Shintani, H., Hashimoto, H.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 1, pages: 860-867, 2001 (inproceedings)

pi

[BibTex]

[BibTex]

2000


no image
Advances in Large Margin Classifiers

Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D.

pages: 422, Neural Information Processing, MIT Press, Cambridge, MA, USA, October 2000 (book)

Abstract
The concept of large margins is a unifying principle for the analysis of many different approaches to the classification of data from examples, including boosting, mathematical programming, neural networks, and support vector machines. The fact that it is the margin, or confidence level, of a classification--that is, a scale parameter--rather than a raw training error that matters has become a key tool for dealing with classifiers. This book shows how this idea applies to both the theoretical analysis and the design of algorithms. The book provides an overview of recent developments in large margin classifiers, examines connections with other methods (e.g., Bayesian inference), and identifies strengths and weaknesses of the method, as well as directions for future research. Among the contributors are Manfred Opper, Vladimir Vapnik, and Grace Wahba.

ei

Web [BibTex]

2000


Web [BibTex]


no image
An Introduction to Kernel-Based Learning Algorithms

Müller, K., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.

In Handbook of Neural Network Signal Processing, 4, (Editors: Yu Hen Hu and Jang-Neng Hwang), CRC Press, 2000 (inbook)

ei

[BibTex]

[BibTex]


no image
Choosing nu in support vector regression with different noise models — theory and experiments

Chalimourda, A., Schölkopf, B., Smola, A.

In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000, Neural Computing: New Challenges and Perspectives for the New Millennium, IEEE, International Joint Conference on Neural Networks, 2000 (inproceedings)

ei

[BibTex]

[BibTex]


no image
Two-dimensional fine particle positioning under an optical microscope using a piezoresistive cantilever as a manipulator

Sitti, M., Hashimoto, H.

journal of Micromechatronics, 1(1):25-48, Brill, 2000 (article)

pi

[BibTex]


no image
Investigation of Virtual Reality Interface for AFM-based Nano Manipulation

Horiguchi, S., Sitti, M., Hashimoto, H.

IEEJ Transactions on Electronics, Information and Systems, 120(12):1948-1956, The Institute of Electrical Engineers of Japan, 2000 (article)

pi

[BibTex]

[BibTex]


no image
Macro to Nano Tele-Manipulation Towards Nanoelectromec hanical Systems

Sitti, M., Hashimoto, H.

Journal of Robotics and Mechatronics, 12(3):209-217, FUJI TECHNOLOGY PRESS LTD., 2000 (article)

pi

[BibTex]

[BibTex]


no image
Wing transmission for a micromechanical flying insect

Fearing, R. S., Chiang, K. H., Dickinson, M. H., Pick, D., Sitti, M., Yan, J.

In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, 2, pages: 1509-1516, 2000 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Controlled pushing of nanoparticles: modeling and experiments

Sitti, M., Hashimoto, H.

IEEE/ASME transactions on mechatronics, 5(2):199-211, IEEE, 2000 (article)

pi

[BibTex]

[BibTex]

1995


no image
Visual tracking for moving multiple objects: an integration of vision and control

Sitti, M, Bozma, I, Denker, A

In Industrial Electronics, 1995. ISIE’95., Proceedings of the IEEE International Symposium on, 2, pages: 535-540, 1995 (inproceedings)

pi

[BibTex]

1995


[BibTex]