Header logo is


2019


no image
A Robotic Framework to Facilitate Sensory Experiences for Children with Autism Spectrum Disorder: A Preliminary Study

Javed, H., Burns, R., Jeong, M., Howard, A. M., Park, C. H.

ACM Transactions on Human-Robot Interaction (THRI), 9(1), December 2019 (article)

Abstract
The diagnosis of Autism Spectrum Disorder (ASD) in children is commonly accompanied by a diagnosis of sensory processing disorders. Abnormalities are usually reported in multiple sensory processing domains, showing a higher prevalence of unusual responses, particularly to tactile, auditory, and visual stimuli. This article discusses a novel robot-based framework designed to target sensory difficulties faced by children with ASD in a controlled setting. The setup consists of a number of sensory stations, together with two different robotic agents that navigate the stations and interact with the stimuli. These stimuli are designed to resemble real-world scenarios that form a common part of one’s everyday experiences. Given the strong interest of children with ASD in technology in general and robots in particular, we attempt to utilize our robotic platform to demonstrate socially acceptable responses to the stimuli in an interactive, pedagogical setting that encourages the child’s social, motor, and vocal skills, while providing a diverse sensory experience. A preliminary user study was conducted to evaluate the efficacy of the proposed framework, with a total of 18 participants (5 with ASD and 13 typically developing) between the ages of 4 and 12 years. We derive a measure of social engagement, based on which we evaluate the effectiveness of the robots and sensory stations to identify key design features that can improve social engagement in children.

hi

DOI [BibTex]

2019


DOI [BibTex]


Thumb xl paper images.005
Learning to Explore in Motion and Interaction Tasks

Bogdanovic, M., Righetti, L.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, November 2019 (conference)

Abstract
Model free reinforcement learning suffers from the high sampling complexity inherent to robotic manipulation or locomotion tasks. Most successful approaches typically use random sampling strategies which leads to slow policy convergence. In this paper we present a novel approach for efficient exploration that leverages previously learned tasks. We exploit the fact that the same system is used across many tasks and build a generative model for exploration based on data from previously solved tasks to improve learning new tasks. The approach also enables continuous learning of improved exploration strategies as novel tasks are learned. Extensive simulations on a robot manipulator performing a variety of motion and contact interaction tasks demonstrate the capabilities of the approach. In particular, our experiments suggest that the exploration strategy can more than double learning speed, especially when rewards are sparse. Moreover, the algorithm is robust to task variations and parameter tuning, making it beneficial for complex robotic problems.

mg

arXiv [BibTex]

arXiv [BibTex]


Thumb xl screenshot 2019 04 08 at 16.22.00
Effect of Remote Masking on Detection of Electrovibration

Jamalzadeh, M., Güçlü, B., Vardar, Y., Basdogan, C.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 229-234, Tokyo, Japan, July 2019 (inproceedings)

Abstract
Masking has been used to study human perception of tactile stimuli, including those created on haptic touch screens. Earlier studies have investigated the effect of in-site masking on tactile perception of electrovibration. In this study, we investigated whether it is possible to change detection threshold of electrovibration at fingertip of index finger via remote masking, i.e. by applying a (mechanical) vibrotactile stimulus on the proximal phalanx of the same finger. The masking stimuli were generated by a voice coil (Haptuator). For eight participants, we first measured the detection thresholds for electrovibration at the fingertip and for vibrotactile stimuli at the proximal phalanx. Then, the vibrations on the skin were measured at four different locations on the index finger of subjects to investigate how the mechanical masking stimulus propagated as the masking level was varied. Finally, electrovibration thresholds measured in the presence of vibrotactile masking stimuli. Our results show that vibrotactile masking stimuli generated sub-threshold vibrations around fingertip, and hence did not mechanically interfere with the electrovibration stimulus. However, there was a clear psychophysical masking effect due to central neural processes. Electrovibration absolute threshold increased approximately 0.19 dB for each dB increase in the masking level.

hi

DOI [BibTex]

DOI [BibTex]


Thumb xl paper images.006
Learning Variable Impedance Control for Contact Sensitive Tasks

Bogdanovic, M., Khadiv, M., Righetti, L.

arXiv preprint, arXiv:1907.07500, July 2019 (article)

Abstract
Reinforcement learning algorithms have shown great success in solving different problems ranging from playing video games to robotics. However, they struggle to solve delicate robotic problems, especially those involving contact interactions. Though in principle a policy outputting joint torques should be able to learn these tasks, in practice we see that they have difficulty to robustly solve the problem without any structure in the action space. In this paper, we investigate how the choice of action space can give robust performance in presence of contact uncertainties. We propose to learn a policy that outputs impedance and desired position in joint space as a function of system states without imposing any other structure to the problem. We compare the performance of this approach to torque and position control policies under different contact uncertainties. Extensive simulation results on two different systems, a hopper (floating-base) with intermittent contacts and a manipulator (fixed-base) wiping a table, show that our proposed approach outperforms policies outputting torque or position in terms of both learning rate and robustness to environment uncertainty.

mg

[BibTex]


Thumb xl image
Objective and Subjective Assessment of Algorithms for Reducing Three-Axis Vibrations to One-Axis Vibrations

Park, G., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference, pages: 467-472, July 2019 (inproceedings)

Abstract
A typical approach to creating realistic vibrotactile feedback is reducing 3D vibrations recorded by an accelerometer to 1D signals that can be played back on a haptic actuator, but some of the information is often lost in this dimensional reduction process. This paper describes seven representative algorithms and proposes four metrics based on the spectral match, the temporal match, and the average value and the variability of them across 3D rotations. These four performance metrics were applied to four texture recordings, and the method utilizing the discrete fourier transform (DFT) was found to be the best regardless of the sensing axis. We also recruited 16 participants to assess the perceptual similarity achieved by each algorithm in real time. We found the four metrics correlated well with the subjectively rated similarities for the six dimensional reduction algorithms, with the exception of taking the 3D vector magnitude, which was perceived to be good despite its low spectral and temporal match metrics.

hi

DOI [BibTex]

DOI [BibTex]


Thumb xl screenshot 2019 04 08 at 16.08.19
Fingertip Interaction Metrics Correlate with Visual and Haptic Perception of Real Surfaces

Vardar, Y., Wallraven, C., Kuchenbecker, K. J.

In Proceedings of the IEEE World Haptics Conference (WHC), pages: 395-400, Tokyo, Japan, July 2019 (inproceedings)

Abstract
Both vision and touch contribute to the perception of real surfaces. Although there have been many studies on the individual contributions of each sense, it is still unclear how each modality’s information is processed and integrated. To fill this gap, we investigated the similarity of visual and haptic perceptual spaces, as well as how well they each correlate with fingertip interaction metrics. Twenty participants interacted with ten different surfaces from the Penn Haptic Texture Toolkit by either looking at or touching them and judged their similarity in pairs. By analyzing the resulting similarity ratings using multi-dimensional scaling (MDS), we found that surfaces are similarly organized within the three-dimensional perceptual spaces of both modalities. Also, between-participant correlations were significantly higher in the haptic condition. In a separate experiment, we obtained the contact forces and accelerations acting on one finger interacting with each surface in a controlled way. We analyzed the collected fingertip interaction data in both the time and frequency domains. Our results suggest that the three perceptual dimensions for each modality can be represented by roughness/smoothness, hardness/softness, and friction, and that these dimensions can be estimated by surface vibration power, tap spectral centroid, and kinetic friction coefficient, respectively.

hi

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl motorized device
Implementation of a 6-DOF Parallel Continuum Manipulator for Delivering Fingertip Tactile Cues

Young, E. M., Kuchenbecker, K. J.

IEEE Transactions on Haptics, 12(3):295-306, June 2019 (article)

Abstract
Existing fingertip haptic devices can deliver different subsets of tactile cues in a compact package, but we have not yet seen a wearable six-degree-of-freedom (6-DOF) display. This paper presents the Fuppeteer (short for Fingertip Puppeteer), a device that is capable of controlling the position and orientation of a flat platform, such that any combination of normal and shear force can be delivered at any location on any human fingertip. We build on our previous work of designing a parallel continuum manipulator for fingertip haptics by presenting a motorized version in which six flexible Nitinol wires are actuated via independent roller mechanisms and proportional-derivative controllers. We evaluate the settling time and end-effector vibrations observed during system responses to step inputs. After creating a six-dimensional lookup table and adjusting simulated inputs using measured Jacobians, we show that the device can make contact with all parts of the fingertip with a mean error of 1.42 mm. Finally, we present results from a human-subject study. A total of 24 users discerned 9 evenly distributed contact locations with an average accuracy of 80.5%. Translational and rotational shear cues were identified reasonably well near the center of the fingertip and more poorly around the edges.

hi

DOI [BibTex]


no image
Internal Array Electrodes Improve the Spatial Resolution of Soft Tactile Sensors Based on Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5411-5417, Montreal, Canada, May 2019, Hyosang Lee and Kyungseo Park contributed equally to this publication (inproceedings)

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl teaser awesome v2
Haptipedia: Accelerating Haptic Device Discovery to Support Interaction & Engineering Design

Seifi, H., Fazlollahi, F., Oppermann, M., Sastrillo, J. A., Ip, J., Agrawal, A., Park, G., Kuchenbecker, K. J., MacLean, K. E.

In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI), Glasgow, Scotland, May 2019 (inproceedings)

Abstract
Creating haptic experiences often entails inventing, modifying, or selecting specialized hardware. However, experience designers are rarely engineers, and 30 years of haptic inventions are buried in a fragmented literature that describes devices mechanically rather than by potential purpose. We conceived of Haptipedia to unlock this trove of examples: Haptipedia presents a device corpus for exploration through metadata that matter to both device and experience designers. It is a taxonomy of device attributes that go beyond physical description to capture potential utility, applied to a growing database of 105 grounded force-feedback devices, and accessed through a public visualization that links utility to morphology. Haptipedia's design was driven by both systematic review of the haptic device literature and rich input from diverse haptic designers. We describe Haptipedia's reception (including hopes it will redefine device reporting standards) and our plans for its sustainability through community participation.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl robot
Improving Haptic Adjective Recognition with Unsupervised Feature Learning

Richardson, B. A., Kuchenbecker, K. J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 3804-3810, Montreal, Canada, May 2019 (inproceedings)

Abstract
Humans can form an impression of how a new object feels simply by touching its surfaces with the densely innervated skin of the fingertips. Many haptics researchers have recently been working to endow robots with similar levels of haptic intelligence, but these efforts almost always employ hand-crafted features, which are brittle, and concrete tasks, such as object recognition. We applied unsupervised feature learning methods, specifically K-SVD and Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP), to rich multi-modal haptic data from a diverse dataset. We then tested the learned features on 19 more abstract binary classification tasks that center on haptic adjectives such as smooth and squishy. The learned features proved superior to traditional hand-crafted features by a large margin, almost doubling the average F1 score across all adjectives. Additionally, particular exploratory procedures (EPs) and sensor channels were found to support perception of certain haptic adjectives, underlining the need for diverse interactions and multi-modal haptic data.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl paper images.007
Leveraging Contact Forces for Learning to Grasp

Merzic, H., Bogdanovic, M., Kappler, D., Righetti, L., Bohg, J.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2019, IEEE, International Conference on Robotics and Automation, May 2019 (inproceedings)

Abstract
Grasping objects under uncertainty remains an open problem in robotics research. This uncertainty is often due to noisy or partial observations of the object pose or shape. To enable a robot to react appropriately to unforeseen effects, it is crucial that it continuously takes sensor feedback into account. While visual feedback is important for inferring a grasp pose and reaching for an object, contact feedback offers valuable information during manipulation and grasp acquisition. In this paper, we use model-free deep reinforcement learning to synthesize control policies that exploit contact sensing to generate robust grasping under uncertainty. We demonstrate our approach on a multi-fingered hand that exhibits more complex finger coordination than the commonly used two- fingered grippers. We conduct extensive experiments in order to assess the performance of the learned policies, with and without contact sensing. While it is possible to learn grasping policies without contact sensing, our results suggest that contact feedback allows for a significant improvement of grasping robustness under object pose uncertainty and for objects with a complex shape.

am mg

video arXiv [BibTex]

video arXiv [BibTex]


Thumb xl screenshot 2019 02 03 at 19.15.13
A Novel Texture Rendering Approach for Electrostatic Displays

Fiedler, T., Vardar, Y.

In Proceedings of International Workshop on Haptic and Audio Interaction Design (HAID), Lille, France, March 2019 (inproceedings)

Abstract
Generating realistic texture feelings on tactile displays using data-driven methods has attracted a lot of interest in the last decade. However, the need for large data storages and transmission rates complicates the use of these methods for the future commercial displays. In this paper, we propose a new texture rendering approach which can compress the texture data signicantly for electrostatic displays. Using three sample surfaces, we first explain how to record, analyze and compress the texture data, and render them on a touchscreen. Then, through psychophysical experiments conducted with nineteen participants, we show that the textures can be reproduced by a signicantly less number of frequency components than the ones in the original signal without inducing perceptual degradation. Moreover, our results indicate that the possible degree of compression is affected by the surface properties.

hi

Fiedler19-HAID-Electrostatic [BibTex]

Fiedler19-HAID-Electrostatic [BibTex]


no image
Elastic modulus affects adhesive strength of gecko-inspired synthetics in variable temperature and humidity

Mitchell, CT, Drotlef, D, Dayan, CB, Sitti, M, Stark, AY

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E372-E372, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, March 2019 (inproceedings)

pi

[BibTex]

[BibTex]


no image
The Perception of Ultrasonic Square Reductions of Friction With Variable Sharpness and Duration

Gueorguiev, D., Vezzoli, E., Sednaoui, T., Grisoni, L., Lemaire-Semail, B.

IEEE Transactions on Haptics, 12(2):179-188, January 2019 (article)

Abstract
The human perception of square ultrasonic modulation of the finger-surface friction was investigated during active tactile exploration by using short frictional cues of varying duration and sharpness. In a first experiment, we asked participants to discriminate the transition time and duration of short square ultrasonic reductions of friction. They proved very sensitive to discriminate millisecond differences in these two parameters with the average psychophysical thresholds being 2.3–2.4 ms for both parameters. A second experiment focused on the perception of square friction reductions with variable transition times and durations. We found that for durations of the stimulation larger than 90 ms, participants often perceived three or four edges when only two stimulations were presented while they consistently felt two edges for signals shorter than 50 ms. A subsequent analysis of the contact forces induced by these ultrasonic stimulations during slow and fast active exploration showed that two identical consecutive ultrasonic pulses can induce significantly different frictional dynamics especially during fast motion of the finger. These results confirm the human sensitivity to transient frictional cues and suggest that the human perception of square reductions of friction can depend on their sharpness and duration as well as on the speed of exploration.

hi

DOI [BibTex]

DOI [BibTex]


no image
How Does It Feel to Clap Hands with a Robot?

Fitter, N. T., Kuchenbecker, K. J.

International Journal of Social Robotics, 2019 (article) Accepted

Abstract
Future robots may need lighthearted physical interaction capabilities to connect with people in meaningful ways. To begin exploring how users perceive playful human–robot hand-to-hand interaction, we conducted a study with 20 participants. Each user played simple hand-clapping games with the Rethink Robotics Baxter Research Robot during a 1-h-long session involving 24 randomly ordered conditions that varied in facial reactivity, physical reactivity, arm stiffness, and clapping tempo. Survey data and experiment recordings demonstrate that this interaction is viable: all users successfully completed the experiment and mentioned enjoying at least one game without prompting. Hand-clapping tempo was highly salient to users, and human-like robot errors were more widely accepted than mechanical errors. Furthermore, perceptions of Baxter varied in the following statistically significant ways: facial reactivity increased the robot’s perceived pleasantness and energeticness; physical reactivity decreased pleasantness, energeticness, and dominance; higher arm stiffness increased safety and decreased dominance; and faster tempo increased energeticness and increased dominance. These findings can motivate and guide roboticists who want to design social–physical human–robot interactions.

hi

[BibTex]

[BibTex]


no image
X-ray Optics Fabrication Using Unorthodox Approaches

Sanli, U., Baluktsian, M., Ceylan, H., Sitti, M., Weigand, M., Schütz, G., Keskinbora, K.

Bulletin of the American Physical Society, APS, 2019 (article)

mms pi

[BibTex]

[BibTex]


Thumb xl as20205.f2
Microrobotics and Microorganisms: Biohybrid Autonomous Cellular Robots

Alapan, Y., Yasa, O., Yigit, B., Yasa, I. C., Erkoc, P., Sitti, M.

Annual Review of Control, Robotics, and Autonomous Systems, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl woodw1 2892811 large
Tailored Magnetic Springs for Shape-Memory Alloy Actuated Mechanisms in Miniature Robots

Woodward, M. A., Sitti, M.

IEEE Transactions on Robotics, 35, 2019 (article)

Abstract
Animals can incorporate large numbers of actuators because of the characteristics of muscles; whereas, robots cannot, as typical motors tend to be large, heavy, and inefficient. However, shape-memory alloys (SMA), materials that contract during heating because of change in their crystal structure, provide another option. SMA, though, is unidirectional and therefore requires an additional force to reset (extend) the actuator, which is typically provided by springs or antagonistic actuation. These strategies, however, tend to limit the actuator's work output and functionality as their force-displacement relationships typically produce increasing resistive force with limited variability. In contrast, magnetic springs-composed of permanent magnets, where the interaction force between magnets mimics a spring force-have much more variable force-displacement relationships and scale well with SMA. However, as of yet, no method for designing magnetic springs for SMA-actuators has been demonstrated. Therefore, in this paper, we present a new methodology to tailor magnetic springs to the characteristics of these actuators, with experimental results both for the device and robot-integrated SMA-actuators. We found magnetic building blocks, based on sets of permanent magnets, which are well-suited to SMAs and have the potential to incorporate features such as holding force, state transitioning, friction minimization, auto-alignment, and self-mounting. We show magnetic springs that vary by more than 3 N in 750 $\mu$m and two SMA-actuated devices that allow the MultiMo-Bat to reach heights of up to 4.5 m without, and 3.6 m with, integrated gliding airfoils. Our results demonstrate the potential of this methodology to add previously impossible functionality to smart material actuators. We anticipate this methodology will inspire broader consideration of the use of magnetic springs in miniature robots and further study of the potential of tailored magnetic springs throughout mechanical systems.

pi

DOI [BibTex]


Thumb xl figure1
Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy

Son, D., Gilbert, H., Sitti, M.

Soft robotics, Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New …, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl smll201900472 fig 0001 m
Thrust and Hydrodynamic Efficiency of the Bundled Flagella

Danis, U., Rasooli, R., Chen, C., Dur, O., Sitti, M., Pekkan, K.

Micromachines, 10, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl screenshot 2019 12 11 at 20.48.00
Tactile Roughness Perception of Virtual Gratings by Electrovibration

Isleyen, A., Vardar, Y., Basdogan, C.

IEEE Transactions on Haptics, 2019 (article) Accepted

hi

[BibTex]

[BibTex]


Thumb xl c8sm02215a f1 hi res
The near and far of a pair of magnetic capillary disks

Koens, L., Wang, W., Sitti, M., Lauga, E.

Soft Matter, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl smll201900472 fig 0001 m
Multifarious Transit Gates for Programmable Delivery of Bio‐functionalized Matters

Hu, X., Torati, S. R., Kim, H., Yoon, J., Lim, B., Kim, K., Sitti, M., Kim, C.

Small, Wiley Online Library, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl capture
Multi-functional soft-bodied jellyfish-like swimming

Ren, Z., Hu, W., Dong, X., Sitti, M.

Nature communications, 10, 2019 (article)

pi

[BibTex]


no image
Welcome to Progress in Biomedical Engineering

Sitti, M.

Progress in Biomedical Engineering, 1, IOP Publishing, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl smll201900472 fig 0001 m
Mechanics of a pressure-controlled adhesive membrane for soft robotic gripping on curved surfaces

Song, S., Drotlef, D., Paik, J., Majidi, C., Sitti, M.

Extreme Mechanics Letters, Elsevier, 2019 (article)

pi

[BibTex]


Thumb xl mt 2018 00757w 0007
Graphene oxide synergistically enhances antibiotic efficacy in Vancomycin resistance Staphylococcus aureus

Singh, V., Kumar, V., Kashyap, S., Singh, A. V., Kishore, V., Sitti, M., Saxena, P. S., Srivastava, A.

ACS Applied Bio Materials, ACS Publications, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl itxm a 1566425 f0001 c
Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design

Singh, A. V., Laux, P., Luch, A., Sudrik, C., Wiehr, S., Wild, A., Santamauro, G., Bill, J., Sitti, M.

Toxicology Mechanisms and Methods, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl capture
Multifunctional and biodegradable self-propelled protein motors

Pena-Francesch, A., Giltinan, J., Sitti, M.

Nature communications, 10, Nature Publishing Group, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl capture
Cohesive self-organization of mobile microrobotic swarms

Yigit, B., Alapan, Y., Sitti, M.

arXiv preprint arXiv:1907.05856, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl adtp201800064 fig 0004 m
Mobile microrobots for active therapeutic delivery

Erkoc, P., Yasa, I. C., Ceylan, H., Yasa, O., Alapan, Y., Sitti, M.

Advanced Therapeutics, Wiley Online Library, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl smll201900472 fig 0001 m
Shape-encoded dynamic assembly of mobile micromachines

Alapan, Y., Yigit, B., Beker, O., Demirörs, A. F., Sitti, M.

Nature, 18, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl adom201801313 fig 0001 m
Microfluidics Integrated Lithography‐Free Nanophotonic Biosensor for the Detection of Small Molecules

Sreekanth, K. V., Sreejith, S., Alapan, Y., Sitti, M., Lim, C. T., Singh, R.

Advanced Optical Materials, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Gecko-inspired composite microfibers for reversible adhesion on smooth and rough surfaces

Drotlef, D., Dayan, C., Sitti, M.

In INTEGRATIVE AND COMPARATIVE BIOLOGY, pages: E58-E58, OXFORD UNIV PRESS INC JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA, 2019 (inproceedings)

pi

[BibTex]

[BibTex]


Thumb xl 201904010817153241
ENGINEERING Bio-inspired robotic collectives

Sitti, M.

Nature, 567, pages: 314-315, Macmillan Publishers Ltd., London, England, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Robust Humanoid Locomotion Using Trajectory Optimization and Sample-Efficient Learning

Yeganegi, M. H., Khadiv, M., Moosavian, S. A. A., Zhu, J., Prete, A. D., Righetti, L.

Proceedings International Conference on Humanoid Robots, IEEE, 2019 IEEE-RAS International Conference on Humanoid Robots, 2019 (conference)

Abstract
Trajectory optimization (TO) is one of the most powerful tools for generating feasible motions for humanoid robots. However, including uncertainties and stochasticity in the TO problem to generate robust motions can easily lead to intractable problems. Furthermore, since the models used in TO have always some level of abstraction, it can be hard to find a realistic set of uncertainties in the model space. In this paper we leverage a sample-efficient learning technique (Bayesian optimization) to robustify TO for humanoid locomotion. The main idea is to use data from full-body simulations to make the TO stage robust by tuning the cost weights. To this end, we split the TO problem into two phases. The first phase solves a convex optimization problem for generating center of mass (CoM) trajectories based on simplified linear dynamics. The second stage employs iterative Linear-Quadratic Gaussian (iLQG) as a whole-body controller to generate full body control inputs. Then we use Bayesian optimization to find the cost weights to use in the first stage that yields robust performance in the simulation/experiment, in the presence of different disturbance/uncertainties. The results show that the proposed approach is able to generate robust motions for different sets of disturbances and uncertainties.

mg

https://arxiv.org/abs/1907.04616 [BibTex]

https://arxiv.org/abs/1907.04616 [BibTex]


Thumb xl capture
Peptide-Induced Biomineralization of Tin Oxide (SnO2) Nanoparticles for Antibacterial Applications

Singh, A. V., Jahnke, T., Xiao, Y., Wang, S., Yu, Y., David, H., Richter, G., Laux, P., Luch, A., Srivastava, A., Saxena, P. S., Bill, J., Sitti, M.

Journal of nanoscience and nanotechnology, 19, American Scientific Publishers, 2019 (article)

pi

[BibTex]

[BibTex]


no image
Electromechanical actuation of dielectric liquid crystal elastomers for soft robotics

Davidson, Z., Shahsavan, H., Guo, Y., Hines, L., Xia, Y., Yang, S., Sitti, M.

Bulletin of the American Physical Society, APS, 2019 (article)

pi

[BibTex]

[BibTex]


Thumb xl turan1 2924846 large
Learning to Navigate Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Gilbert, H. B., Mahmood, F., Durr, N. J., Araujo, H., Sarı, A. E., Ajay, A., Sitti, M.

IEEE Robotics and Automation Letters, 4, 2019 (article)

pi

[BibTex]

[BibTex]