Header logo is


2013


Thumb xl multi modal
3-D Object Reconstruction of Symmetric Objects by Fusing Visual and Tactile Sensing

Illonen, J., Bohg, J., Kyrki, V.

The International Journal of Robotics Research, 33(2):321-341, Sage, October 2013 (article)

Abstract
In this work, we propose to reconstruct a complete 3-D model of an unknown object by fusion of visual and tactile information while the object is grasped. Assuming the object is symmetric, a first hypothesis of its complete 3-D shape is generated. A grasp is executed on the object with a robotic manipulator equipped with tactile sensors. Given the detected contacts between the fingers and the object, the initial full object model including the symmetry parameters can be refined. This refined model will then allow the planning of more complex manipulation tasks. The main contribution of this work is an optimal estimation approach for the fusion of visual and tactile data applying the constraint of object symmetry. The fusion is formulated as a state estimation problem and solved with an iterative extended Kalman filter. The approach is validated experimentally using both artificial and real data from two different robotic platforms.

am

Web DOI Project Page [BibTex]

2013


Web DOI Project Page [BibTex]


Thumb xl toc image
Hybrid nanocolloids with programmed three-dimensional shape and material composition

Mark, A. G., Gibbs, J. G., Lee, T., Fischer, P.

NATURE MATERIALS, 12(9):802-807, 2013, Max Planck Press Release. (article)

Abstract
Tuning the optical(1,2), electromagnetic(3,4) and mechanical properties of a material requires simultaneous control over its composition and shape(5). This is particularly challenging for complex structures at the nanoscale because surface-energy minimization generally causes small structures to be highly symmetric(5). Here we combine low-temperature shadow deposition with nanoscale patterning to realize nanocolloids with anisotropic three-dimensional shapes, feature sizes down to 20 nm and a wide choice of materials. We demonstrate the versatility of the fabrication scheme by growing three-dimensional hybrid nanostructures that contain several functional materials with the lowest possible symmetry, and by fabricating hundreds of billions of plasmonic nanohelices, which we use as chiral metafluids with record circular dichroism and tunable chiroptical properties.

Max Planck Press Release.

pf

Video - Fabrication of Designer Nanostructures DOI [BibTex]


no image
Optimal control of reaching includes kinematic constraints

Mistry, M., Theodorou, E., Schaal, S., Kawato, M.

Journal of Neurophysiology, 2013, clmc (article)

Abstract
We investigate adaptation under a reaching task with an acceleration-based force field perturbation designed to alter the nominal straight hand trajectory in a potentially benign manner:pushing the hand of course in one direction before subsequently restoring towards the target. In this particular task, an explicit strategy to reduce motor effort requires a distinct deviation from the nominal rectilinear hand trajectory. Rather, our results display a clear directional preference during learning, as subjects adapted perturbed curved trajectories towards their initial baselines. We model this behavior using the framework of stochastic optimal control theory and an objective function that trades-of the discordant requirements of 1) target accuracy, 2) motor effort, and 3) desired trajectory. Our work addresses the underlying objective of a reaching movement, and we suggest that robustness, particularly against internal model uncertainly, is as essential to the reaching task as terminal accuracy and energy effciency.

am

PDF [BibTex]

PDF [BibTex]


Thumb xl fig1
Chiral Colloidal Molecules And Observation of The Propeller Effect

Schamel, D., Pfeifer, M., Gibbs, J. G., Miksch, B., Mark, A. G., Fischer, P.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 135(33):12353-12359, 2013 (article)

Abstract
Chiral molecules play an important role in biological and chemical processes, but physical effects due to their symmetry-breaking are generally weak. Several physical chiral separation schemes which could potentially be useful, including the propeller effect, have therefore not yet been demonstrated at the molecular scale. However, it has been proposed that complex nonspherical colloidal particles could act as ``colloidal molecules{''} in mesoscopic model systems to permit the visualization of molecular phenomena that are otherwise difficult to observe. Unfortunately, it is difficult to synthesize such colloids because surface minimization generally favors the growth of symmetric particles. Here we demonstrate the production of large numbers of complex colloids with glancing angle physical vapor deposition. We use chiral colloids to demonstrate the Baranova and Zel'dovich (Baranova, N. B.; Zel'dovich, B. Y. Chem. Phys. Lett. 1978, 57, 435) propeller effect: the separation of a racemic mixture by application of a rotating field that couples to the dipole moment of the enantiomers and screw propels them in opposite directions. The handedness of the colloidal suspensions is monitored with circular differential light scattering. An exact solution for the colloid's propulsion is derived, and comparisons between the colloidal system and the corresponding effect at the molecular scale are made.

pf

Video - Nanospropellers DOI [BibTex]

Video - Nanospropellers DOI [BibTex]


Thumb xl toc image
Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy

Pfeifer, M., Ruf, A., Fischer, P.

OPTICS EXPRESS, 21(22):25643-25654, 2013 (article)

Abstract
We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated. (C) 2013 Optical Society of America

pf

DOI [BibTex]


no image
Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors

Ijspeert, A., Nakanishi, J., Pastor, P., Hoffmann, H., Schaal, S.

Neural Computation, (25):328-373, 2013, clmc (article)

Abstract
Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system, such as a set of linear differential equations, and transform those into a weakly nonlinear system with prescribed attractor dynamics by meansof a learnable autonomous forcing term. Both point attractors and limit cycle attractors of almost arbitrary complexity can be generated. We explain the design principle of our approach and evaluate its properties in several example applications in motor control and robotics.

am

link (url) [BibTex]

link (url) [BibTex]


Thumb xl applied physics cover vol 103 number 21
Plasmonic nanohelix metamaterials with tailorable giant circular dichroism

Gibbs, J. G., Mark, A. G., Eslami, S., Fischer, P.

APPLIED PHYSICS LETTERS, 103(21), 2013, Featured cover article. (article)

Abstract
Plasmonic nanohelix arrays are shown to interact with electromagnetic fields in ways not typically seen with ordinary matter. Chiral metamaterials (CMMs) with feature sizes small with respect to the wavelength of visible light are a promising route to experimentally achieve such phenomena as negative refraction without the need for simultaneously negative e and mu. Here we not only show that giant circular dichroism in the visible is achievable with hexagonally arranged plasmonic nanohelix arrays, but that we can precisely tune the optical activity via morphology and lattice spacing. The discrete dipole approximation is implemented to support experimental data. (C) 2013 AIP Publishing LLC.

Featured cover article.

pf

DOI [BibTex]

DOI [BibTex]


no image
Two-dimensional magnetic micro-module reconfigurations based on inter-modular interactions

Miyashita, S., Diller, E., Sitti, M.

The International Journal of Robotics Research, 32(5):591-613, SAGE Publications Sage UK: London, England, 2013 (article)

pi

[BibTex]

[BibTex]


no image
Contact compliance effects in the frictional response of bioinspired fibrillar adhesives

Piccardo, M., Chateauminois, A., Fretigny, C., Pugno, N. M., Sitti, M.

Journal of The Royal Society Interface, 10(83):20130182, The Royal Society, 2013 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Co-chairs

VINCENT, Julian, ZHU, Di, DAI, Zhendong, CHEN, Da, JIANG, Lei, KANG, Le, REN, Luquan, XUE, Qunji, Zhao, Chunsheng, BARNES, Jon, others

2013 (article)

pi

[BibTex]

[BibTex]


no image
Topological Control of Cell Sheet Migration by the 3D Microenvironment

Song, J., Kim, Y. T., Hazar, M., LeDuc, P. R., Davidson, L. A., Sitti, M.

Biophysical Journal, 104(2):147a, Elsevier, 2013 (article)

pi

[BibTex]

[BibTex]


no image
Independent control of multiple magnetic microrobots in three dimensions

Diller, E., Giltinan, J., Sitti, M.

The International Journal of Robotics Research, 32(5):614-631, SAGE Publications Sage UK: London, England, 2013 (article)

pi

[BibTex]

[BibTex]


no image
Modular micro-robotic assembly through magnetic actuation and thermal bonding

Diller, E., Zhang, N., Sitti, M.

Journal of Micro-Bio Robotics, 8(3-4):121-131, Springer Berlin Heidelberg, 2013 (article)

pi

[BibTex]

[BibTex]


no image
A simulation and design tool for a passive rotation flapping wing mechanism

Arabagi, V., Hines, L., Sitti, M.

IEEE/ASME Transactions on Mechatronics, 18(2):787-798, 2013 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
GECKO-INSPIRED POLYMER ADHESIVES

Menguc, Yigit, Metin, Metin

Polymer Adhesion, Friction, and Lubrication, pages: 351, Wiley, 2013 (article)

pi

[BibTex]

[BibTex]


no image
Near and far-wall effects on the three-dimensional motion of bacteria-driven microbeads

Edwards, M. R., Wright Carlsen, R., Sitti, M.

Applied Physics Letters, 102(14):143701, AIP, 2013 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Magnetically Actuated Soft Capsule With the Multimodal Drug Release Function

Yim, S., Goyal, K., Sitti, M.

IEEE/ASME Trans. on Mechatronics, 18(4):1413-1418, IEEE, 2013 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Optimal distribution of contact forces with inverse-dynamics control

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

The International Journal of Robotics Research, 32(3):280-298, March 2013 (article)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of the contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In this contribution we develop an inverse-dynamics controller for floating-base robots under contact constraints that can minimize any combination of linear and quadratic costs in the contact constraints and the commands. Our main result is the exact analytical derivation of the controller. Such a result is particularly relevant for legged robots as it allows us to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, we can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The main advantages of the controller are its simplicity, computational efficiency and robustness to model inaccuracies. We present detailed experimental results on simulated humanoid and quadruped robots as well as a real quadruped robot. The experiments demonstrate that the controller can greatly improve the robustness of locomotion of the robots.1

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Tank-like module-based climbing robot using passive compliant joints

Seo, T., Sitti, M.

IEEE/ASME Transactions on Mechatronics, 18(1):397-408, 2013 (article)

pi

[BibTex]

[BibTex]


no image
Enhanced fabrication and characterization of gecko-inspired mushroom-tipped microfiber adhesives

Song, J., Mengüç, Y., Sitti, M.

Journal of Adhesion Science and Technology, 27(17):1921-1932, Routledge, 2013 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Micro-scale mobile robotics

Diller, E., Sitti, M.

Foundations and Trends in Robotics, 2(3):143-259, Now Publishers Incorporated, 2013 (article)

pi

[BibTex]

[BibTex]


no image
Survey and Introduction to the Focused Section on Bio-Inspired Mechatronics

Sitti, M., Menciassi, A., Ijspeert, A., Low, K. H., Kim, S.

Mechatronics, IEEE/ASME Transactions on, 18(2):409-418, DOI: 10.1109/TMECH.2012. 2233492, 2013 (article)

pi

[BibTex]

[BibTex]

2010


no image
Policy learning algorithmis for motor learning (Algorithmen zum automatischen Erlernen von Motorfähigkigkeiten)

Peters, J., Kober, J., Schaal, S.

Automatisierungstechnik, 58(12):688-694, 2010, clmc (article)

Abstract
Robot learning methods which allow au- tonomous robots to adapt to novel situations have been a long standing vision of robotics, artificial intelligence, and cognitive sciences. However, to date, learning techniques have yet to ful- fill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics. If possible, scaling was usually only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general ap- proach policy learning with the goal of an application to motor skill refinement in order to get one step closer towards human- like performance. For doing so, we study two major components for such an approach, i. e., firstly, we study policy learning algo- rithms which can be applied in the general setting of motor skill learning, and, secondly, we study a theoretically well-founded general approach to representing the required control structu- res for task representation and execution.

am

link (url) [BibTex]


no image
Gait planning based on kinematics for a quadruped gecko model with redundancy

Son, D., Jeon, D., Nam, W. C., Chang, D., Seo, T., Kim, J.

Robotics and Autonomous Systems, 58, 2010 (article)

pi

[BibTex]

[BibTex]


Thumb xl toc image
Molecular QED of coherent and incoherent sum-frequency and second-harmonic generation in chiral liquids in the presence of a static electric field

Fischer, P., Salam, A.

MOLECULAR PHYSICS, 108(14):1857-1868, 2010 (article)

Abstract
Coherent second-order nonlinear optical processes are symmetry forbidden in centrosymmetric environments in the electric-dipole approximation. In liquids that contain chiral molecules, however, and which therefore lack mirror image symmetry, coherent sum-frequency generation is possible, whereas second-harmonic generation remains forbidden. Here we apply the theory of molecular quantum electrodynamics to the calculation of the matrix element, transition rate, and integrated signal intensity for sum-frequency and second-harmonic generation taking place in a chiral liquid in the presence and absence of a static electric field, to examine which coherent and incoherent processes exist in the electric-dipole approximation in liquids. Third- and fourth-order time-dependent perturbation theory is employed in combination with single-sided Feynman diagrams to evaluate two contributions arising from static field-free and field-induced processes. It is found that, in addition to the coherent term, an incoherent process exists for sum-frequency generation in liquids. Surprisingly, in the case of dc-field-induced second-harmonic generation, the incoherent contribution is found to always vanish for isotropic chiral liquids even though hyper-Rayleigh second-harmonic generation and electric-field-induced second-harmonic generation are both independently symmetry allowed in any liquid.

pf

DOI [BibTex]


no image
Flat dry elastomer adhesives as attachment materials for climbing robots

Unver, O., Sitti, M.

IEEE transactions on robotics, 26(1):131-141, IEEE, 2010 (article)

pi

[BibTex]

[BibTex]


no image
A Bayesian approach to nonlinear parameter identification for rigid-body dynamics

Ting, J., DSouza, A., Schaal, S.

Neural Networks, 2010, clmc (article)

Abstract
For complex robots such as humanoids, model-based control is highly beneficial for accurate tracking while keeping negative feedback gains low for compliance. However, in such multi degree-of-freedom lightweight systems, conventional identification of rigid body dynamics models using CAD data and actuator models is inaccurate due to unknown nonlinear robot dynamic effects. An alternative method is data-driven parameter estimation, but significant noise in measured and inferred variables affects it adversely. Moreover, standard estimation procedures may give physically inconsistent results due to unmodeled nonlinearities or insufficiently rich data. This paper addresses these problems, proposing a Bayesian system identification technique for linear or piecewise linear systems. Inspired by Factor Analysis regression, we develop a computationally efficient variational Bayesian regression algorithm that is robust to ill-conditioned data, automatically detects relevant features, and identifies input and output noise. We evaluate our approach on rigid body parameter estimation for various robotic systems, achieving an error of up to three times lower than other state-of-the-art machine learning methods.

am

link (url) [BibTex]


no image
A first optimal control solution for a complex, nonlinear, tendon driven neuromuscular finger model

Theodorou, E. A., Todorov, E., Valero-Cuevas, F.

Proceedings of the ASME 2010 Summer Bioengineering Conference August 30-September 2, 2010, Naples, Florida, USA, 2010, clmc (article)

Abstract
In this work we present the first constrained stochastic op- timal feedback controller applied to a fully nonlinear, tendon driven index finger model. Our model also takes into account an extensor mechanism, and muscle force-length and force-velocity properties. We show this feedback controller is robust to noise and perturbations to the dynamics, while successfully handling the nonlinearities and high dimensionality of the system. By ex- tending prior methods, we are able to approximate physiological realism by ensuring positivity of neural commands and tendon tensions at all timesthus can, for the first time, use the optimal control framework to predict biologically plausible tendon tensions for a nonlinear neuromuscular finger model. METHODS 1 Muscle Model The rigid-body triple pendulum finger model with slightly viscous joints is actuated by Hill-type muscle models. Joint torques are generated by the seven muscles of the index fin-

am

PDF [BibTex]

PDF [BibTex]


no image
An experimental analysis of elliptical adhesive contact

Sümer, B., Onal, C. D., Aksak, B., Sitti, M.

Journal of Applied Physics, 107(11):113512, AIP, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Efficient learning and feature detection in high dimensional regression

Ting, J., D’Souza, A., Vijayakumar, S., Schaal, S.

Neural Computation, 22, pages: 831-886, 2010, clmc (article)

Abstract
We present a novel algorithm for efficient learning and feature selection in high- dimensional regression problems. We arrive at this model through a modification of the standard regression model, enabling us to derive a probabilistic version of the well-known statistical regression technique of backfitting. Using the Expectation- Maximization algorithm, along with variational approximation methods to overcome intractability, we extend our algorithm to include automatic relevance detection of the input features. This Variational Bayesian Least Squares (VBLS) approach retains its simplicity as a linear model, but offers a novel statistically robust â??black- boxâ? approach to generalized linear regression with high-dimensional inputs. It can be easily extended to nonlinear regression and classification problems. In particular, we derive the framework of sparse Bayesian learning, e.g., the Relevance Vector Machine, with VBLS at its core, offering significant computational and robustness advantages for this class of methods. We evaluate our algorithm on synthetic and neurophysiological data sets, as well as on standard regression and classification benchmark data sets, comparing it with other competitive statistical approaches and demonstrating its suitability as a drop-in replacement for other generalized linear regression techniques.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Stochastic Differential Dynamic Programming

Theodorou, E., Tassa, Y., Todorov, E.

In the proceedings of American Control Conference (ACC 2010) , 2010, clmc (article)

Abstract
We present a generalization of the classic Differential Dynamic Programming algorithm. We assume the existence of state- and control-dependent process noise, and proceed to derive the second-order expansion of the cost-to-go. Despite having quartic and cubic terms in the initial expression, we show that these vanish, leaving us with the same quadratic structure as standard DDP.

am

PDF [BibTex]

PDF [BibTex]


no image
Enhanced wet adhesion and shear of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p (DMA-co-MEA) tip coating

Glass, P., Chung, H., Washburn, N. R., Sitti, M.

Langmuir, 26(22):17357-17362, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Learning control in robotics – trajectory-based opitimal control techniques

Schaal, S., Atkeson, C. G.

Robotics and Automation Magazine, 17(2):20-29, 2010, clmc (article)

Abstract
In a not too distant future, robots will be a natural part of daily life in human society, providing assistance in many areas ranging from clinical applications, education and care giving, to normal household environments [1]. It is hard to imagine that all possible tasks can be preprogrammed in such robots. Robots need to be able to learn, either by themselves or with the help of human supervision. Additionally, wear and tear on robots in daily use needs to be automatically compensated for, which requires a form of continuous self-calibration, another form of learning. Finally, robots need to react to stochastic and dynamic environments, i.e., they need to learn how to optimally adapt to uncertainty and unforeseen changes. Robot learning is going to be a key ingredient for the future of autonomous robots. While robot learning covers a rather large field, from learning to perceive, to plan, to make decisions, etc., we will focus this review on topics of learning control, in particular, as it is concerned with learning control in simulated or actual physical robots. In general, learning control refers to the process of acquiring a control strategy for a particular control system and a particular task by trial and error. Learning control is usually distinguished from adaptive control [2] in that the learning system can have rather general optimization objectivesâ??not just, e.g., minimal tracking errorâ??and is permitted to fail during the process of learning, while adaptive control emphasizes fast convergence without failure. Thus, learning control resembles the way that humans and animals acquire new movement strategies, while adaptive control is a special case of learning control that fulfills stringent performance constraints, e.g., as needed in life-critical systems like airplanes. Learning control has been an active topic of research for at least three decades. However, given the lack of working robots that actually use learning components, more work needs to be done before robot learning will make it beyond the laboratory environment. This article will survey some ongoing and past activities in robot learning to assess where the field stands and where it is going. We will largely focus on nonwheeled robots and less on topics of state estimation, as typically explored in wheeled robots [3]â??6], and we emphasize learning in continuous state-action spaces rather than discrete state-action spaces [7], [8]. We will illustrate the different topics of robot learning with examples from our own research with anthropomorphic and humanoid robots.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Learning, planning, and control for quadruped locomotion over challenging terrain

Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.

International Journal of Robotics Research, 30(2):236-258, 2010, clmc (article)

Abstract
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero- Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrains of varying difficulty levels. The terrain that the robot was tested on includes rocks, logs, steps, barriers, and gaps, with obstacle sizes up to the leg length of the robot. We demonstrate the generalization ability of this controller by presenting results from testing performed by an independent external test team on terrain that has never been shown to us.

am

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Teleoperated 3-D force feedback from the nanoscale with an atomic force microscope

Onal, C. D., Sitti, M.

IEEE Transactions on nanotechnology, 9(1):46-54, IEEE, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Roll and pitch motion analysis of a biologically inspired quadruped water runner robot

Park, H. S., Floyd, S., Sitti, M.

The International Journal of Robotics Research, 29(10):1281-1297, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing

Kim, Seok, Wu, Jian, Carlson, Andrew, Jin, Sung Hun, Kovalsky, Anton, Glass, Paul, Liu, Zhuangjian, Ahmed, Numair, Elgan, Steven L, Chen, Weiqiu, others

Proceedings of the National Academy of Sciences, 107(40):17095-17100, National Acad Sciences, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Tankbot: A palm-size, tank-like climbing robot using soft elastomer adhesive treads

Unver, O., Sitti, M.

The International Journal of Robotics Research, 29(14):1761-1777, SAGE Publications Sage UK: London, England, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Note: Aligned deposition and modal characterization of micron and submicron poly (methyl methacyrlate) fiber cantilevers

Nain, A. S., Filiz, S., Burak Ozdoganlar, O., Sitti, M., Amon, C.

Review of Scientific Instruments, 81(1):016102, AIP, 2010 (article)

pi

[BibTex]

[BibTex]


no image
Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning

Chung, H., Glass, P., Pothen, J. M., Sitti, M., Washburn, N. R.

Biomacromolecules, 12(2):342-347, American Chemical Society, 2010 (article)

pi

Project Page [BibTex]

Project Page [BibTex]

1992


no image
Ins CAD integrierte Kostenkalkulation (CAD-Integrated Cost Calculation)

Ehrlenspiel, K., Schaal, S.

Konstruktion 44, 12, pages: 407-414, 1992, clmc (article)

am

[BibTex]

1992


[BibTex]