Header logo is


2020


no image
Community detection with node attributes in multilayer networks

Martina Contisciani, E. A. P., Bacco, C. D.

Nature Scientific Reports, 10, pages: 15736, September 2020 (article)

pio

[BibTex]

2020


[BibTex]


Learning Variable Impedance Control for Contact Sensitive Tasks
Learning Variable Impedance Control for Contact Sensitive Tasks

Bogdanovic, M., Khadiv, M., Righetti, L.

IEEE Robotics and Automation Letters ( Early Access ), IEEE, July 2020 (article)

Abstract
Reinforcement learning algorithms have shown great success in solving different problems ranging from playing video games to robotics. However, they struggle to solve delicate robotic problems, especially those involving contact interactions. Though in principle a policy outputting joint torques should be able to learn these tasks, in practice we see that they have difficulty to robustly solve the problem without any structure in the action space. In this paper, we investigate how the choice of action space can give robust performance in presence of contact uncertainties. We propose to learn a policy that outputs impedance and desired position in joint space as a function of system states without imposing any other structure to the problem. We compare the performance of this approach to torque and position control policies under different contact uncertainties. Extensive simulation results on two different systems, a hopper (floating-base) with intermittent contacts and a manipulator (fixed-base) wiping a table, show that our proposed approach outperforms policies outputting torque or position in terms of both learning rate and robustness to environment uncertainty.

mg

DOI [BibTex]

DOI [BibTex]


Walking Control Based on Step Timing Adaptation
Walking Control Based on Step Timing Adaptation

Khadiv, M., Herzog, A., Moosavian, S. A. A., Righetti, L.

IEEE Transactions on Robotics, 36, pages: 629 - 643, IEEE, June 2020 (article)

Abstract
Step adjustment can improve the gait robustness of biped robots; however, the adaptation of step timing is often neglected as it gives rise to nonconvex problems when optimized over several footsteps. In this article, we argue that it is not necessary to optimize walking over several steps to ensure gait viability and show that it is sufficient to merely select the next step timing and location. Using this insight, we propose a novel walking pattern generator that optimally selects step location and timing at every control cycle. Our approach is computationally simple compared to standard approaches in the literature, yet guarantees that any viable state will remain viable in the future. We propose a swing foot adaptation strategy and integrate the pattern generator with an inverse dynamics controller that does not explicitly control the center of mass nor the foot center of pressure. This is particularly useful for biped robots with limited control authority over their foot center of pressure, such as robots with point feet or passive ankles. Extensive simulations on a humanoid robot with passive ankles demonstrate the capabilities of the approach in various walking situations, including external pushes and foot slippage, and emphasize the importance of step timing adaptation to stabilize walking.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Analytical classical density functionals from an equation learning network

Lin, S., Martius, G., Oettel, M.

The Journal of Chemical Physics, 152(2):021102, 2020, arXiv preprint \url{https://arxiv.org/abs/1910.12752} (article)

al

Preprint_PDF DOI [BibTex]

Preprint_PDF DOI [BibTex]


Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications
Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications

Souri, H., Banerjee, H., Jusufi, A., Radacsi, N., Stokes, A. A., Park, I., Sitti, M., Amjadi, M.

Advanced Intelligent Systems, 2020 (article)

bio pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model

Wolf, Z., Jusufi, A., Vogt, D. M., Lauder, G. V.

Bioinspiration & Biomimetics, 15(4):046008, Inst. of Physics, London, 2020 (article)

bio

DOI [BibTex]

DOI [BibTex]

2019


no image
Dynamics of beneficial epidemics

Berdahl, A., Brelsford, C., De Bacco, C., Dumas, M., Ferdinand, V., Grochow, J. A., nt Hébert-Dufresne, L., Kallus, Y., Kempes, C. P., Kolchinsky, A., Larremore, D. B., Libby, E., Power, E. A., A., S. C., Tracey, B. D.

Scientific Reports, 9, pages: 15093, October 2019 (article)

pio

DOI [BibTex]

2019


DOI [BibTex]


no image
A Robustness Analysis of Inverse Optimal Control of Bipedal Walking

Rebula, J. R., Schaal, S., Finley, J., Righetti, L.

IEEE Robotics and Automation Letters, 4(4):4531-4538, 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]


Autonomous Identification and Goal-Directed Invocation of Event-Predictive Behavioral Primitives
Autonomous Identification and Goal-Directed Invocation of Event-Predictive Behavioral Primitives

Gumbsch, C., Butz, M. V., Martius, G.

IEEE Transactions on Cognitive and Developmental Systems, 2019 (article)

Abstract
Voluntary behavior of humans appears to be composed of small, elementary building blocks or behavioral primitives. While this modular organization seems crucial for the learning of complex motor skills and the flexible adaption of behavior to new circumstances, the problem of learning meaningful, compositional abstractions from sensorimotor experiences remains an open challenge. Here, we introduce a computational learning architecture, termed surprise-based behavioral modularization into event-predictive structures (SUBMODES), that explores behavior and identifies the underlying behavioral units completely from scratch. The SUBMODES architecture bootstraps sensorimotor exploration using a self-organizing neural controller. While exploring the behavioral capabilities of its own body, the system learns modular structures that predict the sensorimotor dynamics and generate the associated behavior. In line with recent theories of event perception, the system uses unexpected prediction error signals, i.e., surprise, to detect transitions between successive behavioral primitives. We show that, when applied to two robotic systems with completely different body kinematics, the system manages to learn a variety of complex behavioral primitives. Moreover, after initial self-exploration the system can use its learned predictive models progressively more effectively for invoking model predictive planning and goal-directed control in different tasks and environments.

al

arXiv PDF video link (url) DOI Project Page [BibTex]


no image
Rigid vs compliant contact: an experimental study on biped walking

Khadiv, M., Moosavian, S. A. A., Yousefi-Koma, A., Sadedel, M., Ehsani-Seresht, A., Mansouri, S.

Multibody System Dynamics, 45(4):379-401, 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]


no image
Even Delta-Matroids and the Complexity of Planar Boolean CSPs

Kazda, A., Kolmogorov, V., Rolinek, M.

ACM Transactions on Algorithms, 15(2, Special Issue on Soda'17 and Regular Papers):Article Number 22, 2019 (article)

al

DOI [BibTex]

DOI [BibTex]


no image
Machine Learning for Haptics: Inferring Multi-Contact Stimulation From Sparse Sensor Configuration

Sun, H., Martius, G.

Frontiers in Neurorobotics, 13, pages: 51, 2019 (article)

Abstract
Robust haptic sensation systems are essential for obtaining dexterous robots. Currently, we have solutions for small surface areas such as fingers, but affordable and robust techniques for covering large areas of an arbitrary 3D surface are still missing. Here, we introduce a general machine learning framework to infer multi-contact haptic forces on a 3D robot’s limb surface from internal deformation measured by only a few physical sensors. The general idea of this framework is to predict first the whole surface deformation pattern from the sparsely placed sensors and then to infer number, locations and force magnitudes of unknown contact points. We show how this can be done even if training data can only be obtained for single-contact points using transfer learning at the example of a modified limb of the Poppy robot. With only 10 strain-gauge sensors we obtain a high accuracy also for multiple-contact points. The method can be applied to arbitrarily shaped surfaces and physical sensor types, as long as training data can be obtained.

al

link (url) DOI [BibTex]


no image
Co-Contraction facilitates Body Stiffness Modulation during Swimming with Sensory Feedback in a Soft Biorobotic Physical Model

Jusufi, A., Vogt, D., Wood, R. J.

Integrative and Comparative Biology, 59(Supplement 1):E116-E116, Society of Integrative and Comparative Biology, McLean, VA, 2019 (article)

bio

DOI [BibTex]

DOI [BibTex]


no image
Birch tar production does not prove Neanderthal behavioral complexity

Schmidt, P., Blessing, M., Rageot, M., Iovita, R., Pfleging, J., Nickel, K. G., Righetti, L., Tennie, C.

Proceedings of the National Academy of Sciences (PNAS), 116(36):17707-17711, 2019 (article)

mg

DOI [BibTex]

DOI [BibTex]

2018


Robust Physics-based Motion Retargeting with Realistic Body Shapes
Robust Physics-based Motion Retargeting with Realistic Body Shapes

Borno, M. A., Righetti, L., Black, M. J., Delp, S. L., Fiume, E., Romero, J.

Computer Graphics Forum, 37, pages: 6:1-12, July 2018 (article)

Abstract
Motion capture is often retargeted to new, and sometimes drastically different, characters. When the characters take on realistic human shapes, however, we become more sensitive to the motion looking right. This means adapting it to be consistent with the physical constraints imposed by different body shapes. We show how to take realistic 3D human shapes, approximate them using a simplified representation, and animate them so that they move realistically using physically-based retargeting. We develop a novel spacetime optimization approach that learns and robustly adapts physical controllers to new bodies and constraints. The approach automatically adapts the motion of the mocap subject to the body shape of a target subject. This motion respects the physical properties of the new body and every body shape results in a different and appropriate movement. This makes it easy to create a varied set of motions from a single mocap sequence by simply varying the characters. In an interactive environment, successful retargeting requires adapting the motion to unexpected external forces. We achieve robustness to such forces using a novel LQR-tree formulation. We show that the simulated motions look appropriate to each character’s anatomy and their actions are robust to perturbations.

mg ps

pdf video Project Page Project Page [BibTex]

2018


pdf video Project Page Project Page [BibTex]


no image
Nonlinear decoding of a complex movie from the mammalian retina

Botella-Soler, V., Deny, S., Martius, G., Marre, O., Tkačik, G.

PLOS Computational Biology, 14(5):1-27, Public Library of Science, May 2018 (article)

Abstract
Author summary Neurons in the retina transform patterns of incoming light into sequences of neural spikes. We recorded from ∼100 neurons in the rat retina while it was stimulated with a complex movie. Using machine learning regression methods, we fit decoders to reconstruct the movie shown from the retinal output. We demonstrated that retinal code can only be read out with a low error if decoders make use of correlations between successive spikes emitted by individual neurons. These correlations can be used to ignore spontaneous spiking that would, otherwise, cause even the best linear decoders to “hallucinate” nonexistent stimuli. This work represents the first high resolution single-trial full movie reconstruction and suggests a new paradigm for separating spontaneous from stimulus-driven neural activity.

al

DOI [BibTex]

DOI [BibTex]


no image
A physical model for efficient ranking in networks

De Bacco, C., Larremore, D. B., Moore, C.

Science Advances, 4(7), American Association for the Advancement of Science, 2018 (article)

pio

Code Preprint link (url) DOI Project Page [BibTex]

Code Preprint link (url) DOI Project Page [BibTex]


no image
AreWater Smart Landscapes’ Contagious? An epidemic approach on networks to study peer effects

Brelsford, C., De Bacco, C.

Networks and Spatial Economics (NETS), pages: 1572-9427, 2018 (article)

pio

Preprint link (url) [BibTex]

Preprint link (url) [BibTex]


no image
Geckos Race across Water using Multiple Mechanisms

Nirody, J., Jinn, J., Libby, T., Lee, T., Jusufi, A., Hu, D., Full, R.

Current Biology, 2018 (article)

bio

[BibTex]

[BibTex]


no image
Learning a Structured Neural Network Policy for a Hopping Task.

Viereck, J., Kozolinsky, J., Herzog, A., Righetti, L.

IEEE Robotics and Automation Letters, 3(4):4092-4099, October 2018 (article)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
The Impact of Robotics and Automation on Working Conditions and Employment [Ethical, Legal, and Societal Issues]

Pham, Q., Madhavan, R., Righetti, L., Smart, W., Chatila, R.

IEEE Robotics and Automation Magazine, 25(2):126-128, June 2018 (article)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Lethal Autonomous Weapon Systems [Ethical, Legal, and Societal Issues]

Righetti, L., Pham, Q., Madhavan, R., Chatila, R.

IEEE Robotics \& Automation Magazine, 25(1):123-126, March 2018 (article)

Abstract
The topic of lethal autonomous weapon systems has recently caught public attention due to extensive news coverage and apocalyptic declarations from famous scientists and technologists. Weapon systems with increasing autonomy are being developed due to fast improvements in machine learning, robotics, and automation in general. These developments raise important and complex security, legal, ethical, societal, and technological issues that are being extensively discussed by scholars, nongovernmental organizations (NGOs), militaries, governments, and the international community. Unfortunately, the robotics community has stayed out of the debate, for the most part, despite being the main provider of autonomous technologies. In this column, we review the main issues raised by the increase of autonomy in weapon systems and the state of the international discussion. We argue that the robotics community has a fundamental role to play in these discussions, for its own sake, to provide the often-missing technical expertise necessary to frame the debate and promote technological development in line with the IEEE Robotics and Automation Society (RAS) objective of advancing technology to benefit humanity.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2017


no image
Self-Organized Behavior Generation for Musculoskeletal Robots

Der, R., Martius, G.

Frontiers in Neurorobotics, 11, pages: 8, 2017 (article)

al

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]


no image
Community detection, link prediction, and layer interdependence in multilayer networks

De Bacco, C., Power, E. A., Larremore, D. B., Moore, C.

Physical Review E, 95(4):042317, APS, 2017 (article)

pio

Code Preprint link (url) Project Page [BibTex]

Code Preprint link (url) Project Page [BibTex]

2014


no image
Nonequilibrium statistical mechanics of the heat bath for two Brownian particles

De Bacco, C., Baldovin, F., Orlandini, E., Sekimoto, K.

Physical review letters, 112(18):180605, APS, 2014 (article)

pio

Preprint link (url) [BibTex]

2014


Preprint link (url) [BibTex]


no image
Shortest node-disjoint paths on random graphs

De Bacco, C., Franz, S., Saad, D., Yeung, C. H.

Journal of Statistical Mechanics: Theory and Experiment, 2014(7):P07009, IOP Publishing, 2014 (article)

pio

Preprint link (url) Project Page [BibTex]

Preprint link (url) Project Page [BibTex]


no image
An autonomous manipulation system based on force control and optimization

Righetti, L., Kalakrishnan, M., Pastor, P., Binney, J., Kelly, J., Voorhies, R. C., Sukhatme, G. S., Schaal, S.

Autonomous Robots, 36(1-2):11-30, January 2014 (article)

Abstract
In this paper we present an architecture for autonomous manipulation. Our approach is based on the belief that contact interactions during manipulation should be exploited to improve dexterity and that optimizing motion plans is useful to create more robust and repeatable manipulation behaviors. We therefore propose an architecture where state of the art force/torque control and optimization-based motion planning are the core components of the system. We give a detailed description of the modules that constitute the complete system and discuss the challenges inherent to creating such a system. We present experimental results for several grasping and manipulation tasks to demonstrate the performance and robustness of our approach.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning of grasp selection based on shape-templates

Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Bohg, J., Asfour, T., Schaal, S.

Autonomous Robots, 36(1-2):51-65, January 2014 (article)

Abstract
The ability to grasp unknown objects still remains an unsolved problem in the robotics community. One of the challenges is to choose an appropriate grasp configuration, i.e., the 6D pose of the hand relative to the object and its finger configuration. In this paper, we introduce an algorithm that is based on the assumption that similarly shaped objects can be grasped in a similar way. It is able to synthesize good grasp poses for unknown objects by finding the best matching object shape templates associated with previously demonstrated grasps. The grasp selection algorithm is able to improve over time by using the information of previous grasp attempts to adapt the ranking of the templates to new situations. We tested our approach on two different platforms, the Willow Garage PR2 and the Barrett WAM robot, which have very different hand kinematics. Furthermore, we compared our algorithm with other grasp planners and demonstrated its superior performance. The results presented in this paper show that the algorithm is able to find good grasp configurations for a large set of unknown objects from a relatively small set of demonstrations, and does improve its performance over time.

am mg

link (url) DOI [BibTex]