Header logo is


2020


Characterization of a Magnetic Levitation Haptic Interface for Realistic Tool-Based Interactions
Characterization of a Magnetic Levitation Haptic Interface for Realistic Tool-Based Interactions

Lee, H., Tombak, G. I., Park, G., Kuchenbecker, K. J.

Work-in-progress poster presented at EuroHaptics, Leiden, The Netherlands, September 2020 (misc)

Abstract
We introduce our recent study on the characterization of a commercial magnetic levitation haptic interface (MagLev 200, Butterfly Haptics LLC) for realistic high-bandwidth interactions. This device’s haptic rendering scheme can provide strong 6-DoF (force and torque) feedback without friction at all poses in its small workspace. The objective of our study is to enable the device to accurately render realistic multidimensional vibrotactile stimuli measured from a stylus-like tool. Our approach is to characterize the dynamics between the commanded wrench and the resulting translational acceleration across the frequency range of interest. To this end, we first custom-designed and attached a pen-shaped manipulandum (11.5 cm, aluminum) to the top of the MagLev 200’s end-effector for better usability in grasping. An accelerometer (ADXL354, Analog Devices) was rigidly mounted inside the manipulandum. Then, we collected a data set where the input is a 30-second-long force and/or torque signal commanded as a sweep function from 10 to 500 Hz; the output is the corresponding acceleration measurement, which we collected both with and without a user holding the handle. We succeeded at fitting both non-parametric and parametric versions of the transfer functions for both scenarios, with a fitting accuracy of about 95% for the parametric transfer functions. In the future, we plan to find the best method of applying the inverse parametric transfer function to our system. We will then employ that compensation method in a user study to evaluate the realism of different algorithms for reducing the dimensionality of tool-based vibrotactile cues.

hi

link (url) [BibTex]

2020


link (url) [BibTex]


Tactile Textiles: An Assortment of Fabric-Based Tactile Sensors for Contact Force and Contact Location
Tactile Textiles: An Assortment of Fabric-Based Tactile Sensors for Contact Force and Contact Location

Burns, R. B., Thomas, N., Lee, H., Faulkner, R., Kuchenbecker, K. J.

Hands-on demonstration presented at EuroHaptics, Leiden, The Netherlands, September 2020, Rachael Bevill Burns, Neha Thomas, and Hyosang Lee contributed equally to this publication (misc)

Abstract
Fabric-based tactile sensors are promising for the construction of robotic skin due to their soft and flexible nature. Conductive fabric layers can be used to form piezoresistive structures that are sensitive to contact force and/or contact location. This demonstration showcases three diverse fabric-based tactile sensors we have created. The first detects dynamic tactile events anywhere within a region on a robot’s body. The second design measures the precise location at which a single low-force contact is applied. The third sensor uses electrical resistance tomography to output both the force and location of multiple simultaneous contacts applied across a surface.

hi

Project Page Project Page [BibTex]

Project Page Project Page [BibTex]


no image
Estimating Human Handshape by Feeling the Wrist

Forte, M., Young, E. M., Kuchenbecker, K. J.

Work-in-progress poster presented at EuroHaptics, Leiden, The Netherlands, September 2020 (misc)

hi

[BibTex]

[BibTex]


no image
Intermediate Ridges Amplify Mechanoreceptor Strains in Static and Dynamic Touch

Serhat, G., Kuchenbecker, K. J.

Work-in-progress poster presented at the EuroHaptics (EH), Leiden, The Netherlands, September 2020 (misc)

hi

[BibTex]

[BibTex]


no image
Seeing through Touch: Contact-Location Sensing and Tactile Feedback for Prosthetic Hands

Thomas, N., Kuchenbecker, K. J.

Works-in-progress abstract and poster presented at Eurohaptics 2020, Leiden, Netherlands, September 2020 (misc)

Abstract
Locating and picking up an object without vision is a simple task for able-bodied people, due in part to their rich tactile perception capabilities. The same cannot be said for users of standard myoelectric prostheses, who must rely largely on visual cues to successfully interact with the environment. To enable prosthesis users to locate and grasp objects without looking at them, we propose two changes: adding specialized contact-location sensing to the dorsal and palmar aspects of the prosthetic hand’s fingers, and providing the user with tactile feedback of where an object touches the fingers. To evaluate the potential utility of these changes, we developed a simple, sensitive, fabric-based tactile sensor which provides continuous contact location information via a change in voltage of a voltage divider circuit. This sensor was wrapped around the fingers of a commercial prosthetic hand (Ottobock SensorHand Speed). Using an ATI Nano17 force sensor, we characterized the tactile sensor’s response to normal force at distributed contact locations and obtained an average detection threshold of 0.63 +/- 0.26 N. We also confirmed that the voltage-to-location mapping is linear (R squared = 0.99). Sensor signals were adapted to the stationary vibrotactile funneling illusion to provide haptic feedback of contact location. These preliminary results indicate a promising system that imitates a key aspect of the sensory capabilities of the intact hand. Future work includes testing the system in a modified reach-grasp-and-lift study, in which participants must accomplish the task blindfolded.

hi

[BibTex]

[BibTex]


no image
Vision-based Force Estimation for a da Vinci Instrument Using Deep Neural Networks

Lee, Y., Husin, H. M., Forte, M., Lee, S., Kuchenbecker, K. J.

Extended abstract presented as an Emerging Technology ePoster at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Cleveland, Ohio, USA, August 2020 (misc) Accepted

hi

[BibTex]

[BibTex]


A Fabric-Based Sensing System for Recognizing Social Touch
A Fabric-Based Sensing System for Recognizing Social Touch

Burns, R. B., Lee, H., Seifi, H., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, Washington, DC, USA, March 2020 (misc)

Abstract
We present a fabric-based piezoresistive tactile sensor system designed to detect social touch gestures on a robot. The unique sensor design utilizes three layers of low-conductivity fabric sewn together on alternating edges to form an accordion pattern and secured between two outer high-conductivity layers. This five-layer design demonstrates a greater resistance range and better low-force sensitivity than previous designs that use one layer of low-conductivity fabric with or without a plastic mesh layer. An individual sensor from our system can presently identify six different communication gestures – squeezing, patting, scratching, poking, hand resting without movement, and no touch – with an average accuracy of 90%. A layer of foam can be added beneath the sensor to make a rigid robot more appealing for humans to touch without inhibiting the system’s ability to register social touch gestures.

hi

Project Page [BibTex]

Project Page [BibTex]


Do Touch Gestures Affect How Electrovibration Feels?
Do Touch Gestures Affect How Electrovibration Feels?

Vardar, Y., Kuchenbecker, K. J.

Hands-on demonstration (1 page) presented at the IEEE Haptics Symposium, Washington, DC, USA, March 2020 (misc)

hi

[BibTex]

[BibTex]

2017


Physical and Behavioral Factors Improve Robot Hug Quality
Physical and Behavioral Factors Improve Robot Hug Quality

Block, A. E., Kuchenbecker, K. J.

Workshop Paper (2 pages) presented at the RO-MAN Workshop on Social Interaction and Multimodal Expression for Socially Intelligent Robots, Lisbon, Portugal, August 2017 (misc)

Abstract
A hug is one of the most basic ways humans can express affection. As hugs are so common, a natural progression of robot development is to have robots one day hug humans as seamlessly as these intimate human-human interactions occur. This project’s purpose is to evaluate human responses to different robot physical characteristics and hugging behaviors. Specifically, we aim to test the hypothesis that a warm, soft, touch-sensitive PR2 humanoid robot can provide humans with satisfying hugs by matching both their hugging pressure and their hugging duration. Thirty participants experienced and evaluated twelve hugs with the robot, divided into three randomly ordered trials that focused on physical robot char- acteristics and nine randomly ordered trials with varied hug pressure and duration. We found that people prefer soft, warm hugs over hard, cold hugs. Furthermore, users prefer hugs that physically squeeze them and release immediately when they are ready for the hug to end.

hi

Project Page [BibTex]

2017


Project Page [BibTex]


no image
Physically Interactive Exercise Games with a Baxter Robot

Fitter, N. T., Kuchenbecker, K. J.

Hands-on demonstration presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Proton Pack: Visuo-Haptic Surface Data Recording

Burka, A., Kuchenbecker, K. J.

Hands-on demonstration presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Teaching a Robot to Collaborate with a Human Via Haptic Teleoperation

Hu, S., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


How Should Robots Hug?
How Should Robots Hug?

Block, A. E., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
An Interactive Augmented-Reality Video Training Platform for the da Vinci Surgical System

Carlson, J., Kuchenbecker, K. J.

Workshop paper (3 pages) presented at the ICRA Workshop on C4 Surgical Robots, Singapore, May 2017 (misc)

Abstract
Teleoperated surgical robots such as the Intuitive da Vinci Surgical System facilitate minimally invasive surgeries, which decrease risk to patients. However, these systems can be difficult to learn, and existing training curricula on surgical simulators do not offer students the realistic experience of a full operation. This paper presents an augmented-reality video training platform for the da Vinci that will allow trainees to rehearse any surgery recorded by an expert. While the trainee operates a da Vinci in free space, they see their own instruments overlaid on the expert video. Tools are identified in the source videos via color segmentation and kernelized correlation filter tracking, and their depth is calculated from the da Vinci’s stereoscopic video feed. The user tries to follow the expert’s movements, and if any of their tools venture too far away, the system provides instantaneous visual feedback and pauses to allow the user to correct their motion. The trainee can also rewind the expert video by bringing either da Vinci tool very close to the camera. This combined and augmented video provides the user with an immersive and interactive training experience.

hi

[BibTex]

[BibTex]


no image
Hand-Clapping Games with a Baxter Robot

Fitter, N. T., Kuchenbecker, K. J.

Hands-on demonstration presented at ACM/IEEE International Conference on Human-Robot Interaction (HRI), Vienna, Austria, March 2017 (misc)

Abstract
Robots that work alongside humans might be more effective if they could forge a strong social bond with their human partners. Hand-clapping games and other forms of rhythmic social-physical interaction may foster human-robot teamwork, but the design of such interactions has scarcely been explored. At the HRI 2017 conference, we will showcase several such interactions taken from our recent work with the Rethink Robotics Baxter Research Robot, including tempo-matching, Simon says, and Pat-a-cake-like games. We believe conference attendees will be both entertained and intrigued by this novel demonstration of social-physical HRI.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Automatic OSATS Rating of Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 31(Supplement 1):S28, Extended abstract presented as a podium presentation at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Springer, Houston, USA, March 2017 (misc)

Abstract
Introduction: Minimally invasive surgery has revolutionized surgical practice, but challenges remain. Trainees must acquire complex technical skills while minimizing patient risk, and surgeons must maintain their skills for rare procedures. These challenges are magnified in pediatric surgery due to the smaller spaces, finer tissue, and relative dearth of both inanimate and virtual simulators. To build technical expertise, trainees need opportunities for deliberate practice with specific performance feedback, which is typically provided via tedious human grading. This study aimed to validate a novel motion-tracking system and machine learning algorithm for automatically evaluating trainee performance on a pediatric laparoscopic suturing task using a 1–5 OSATS Overall Skill rating. Methods: Subjects (n=14) ranging from medical students to fellows per- formed one or two trials of an intracorporeal suturing task in a custom pediatric laparoscopy training box (Fig. 1) after watching a video of ideal performance by an expert. The position and orientation of the tools and endoscope were recorded over time using Ascension trakSTAR magnetic motion-tracking sensors, and both instrument grasp angles were recorded over time using flex sensors on the handles. The 27 trials were video-recorded and scored on the OSATS scale by a senior fellow; ratings ranged from 1 to 4. The raw motion data from each trial was processed to calculate over 200 preliminary motion parameters. Regularized least-squares regression (LASSO) was used to identify the most predictive parameters for inclusion in a regression tree. Model performance was evaluated by leave-one-subject-out cross validation, wherein the automatic scores given to each subject’s trials (by a model trained on all other data) are compared to the corresponding human rater scores. Results: The best-performing LASSO algorithm identified 14 predictive parameters for inclusion in the regression tree, including completion time, linear path length, angular path length, angular acceleration, grasp velocity, and grasp acceleration. The final model’s raw output showed a strong positive correlation of 0.87 with the reviewer-generated scores, and rounding the output to the nearest integer yielded a leave-one-subject-out cross-validation accuracy of 77.8%. Results are summarized in the confusion matrix (Table 1). Conclusions: Our novel motion-tracking system and regression model automatically gave previously unseen trials overall skill scores that closely match scores from an expert human rater. With additional data and further development, this system may enable creation of a motion-based training platform for pediatric laparoscopic surgery and could yield insights into the fundamental components of surgical skill.

hi

[BibTex]

[BibTex]


no image
How Much Haptic Surface Data is Enough?

Burka, A., Kuchenbecker, K. J.

Workshop paper (5 pages) presented at the AAAI Spring Symposium on Interactive Multi-Sensory Object Perception for Embodied Agents, Stanford, USA, March 2017 (misc)

Abstract
The Proton Pack is a portable visuo-haptic surface interaction recording device that will be used to collect a vast multimodal dataset, intended for robots to use as part of an approach to understanding the world around them. In order to collect a useful dataset, we want to pick a suitable interaction duration for each surface, noting the tradeoff between data collection resources and completeness of data. One interesting approach frames the data collection process as an online learning problem, building an incremental surface model and using that model to decide when there is enough data. Here we examine how to do such online surface modeling and when to stop collecting data, using kinetic friction as a first domain in which to apply online modeling.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Enhancing Human-Computer Interaction via Electrovibration
Enhancing Human-Computer Interaction via Electrovibration

Emgin, S. E., Sadia, B., Vardar, Y., Basdogan, C.

Demo in IEEE World Haptics, 2017 (misc)

Abstract
We present a compact tablet that displays electrostatic haptic feedback to the user. We track user?s finger position via an infrared frame and then display haptic feedback through a capacitive touch screen based on her/his position. In order to demonstrate practical utility of the proposed system, the following applications have been developed: (1) Online Shopping application allows users to be able to feel the cord density of two different fabrics. (2) Education application asks user to add two numbers by dragging one number onto another in order to match the sum. After selecting the first number, haptic feedback assists user to select the right pair. (3) Gaming/Entertainment application presents users a bike riding experience on three different road textures -smooth, bumpy, and sandy. (4) User Interface application in which users are asked to drag two visually identical folders. While dragging, users are able to differentiate the amount of data in each folder based on haptic resistance.

hi

[BibTex]

[BibTex]


Reproduction of textures based on electrovibration
Reproduction of textures based on electrovibration

Fiedler, T., Vardar, Y., Strese, M., Steinbach, E., Basdogan, C.

Demo in IEEE World Haptics, 2017 (misc)

Abstract
This demonstration presents an approach to represent textures based on electovibration. We collect acceleration data which occurs while sliding a tool tip over a real texture surface. The prerecorded data was collected by a ADXL335 accelerometer, which is mounted on a FALCON device moving on the x-axis with a regulated velocity. In order to replicate the same acceleration with electrovibration, we found two problems. The frequency of one sine wave shifts to the double frequency. This effect originates from the electrostatic force between the finger pad and the tactile display as proposed by Kactmarek et Al. [1]. Taking the square root of the input signal corrects the effect. This was also earlier proposed by [1, 2, 3] However, if not only one but multiple sine waves are displayed interference occur and acceleration signals from real textures may not feel perceptually realistic. We propose to display only the dominant frequencies from a real texture signal. Peak frequencies are determined within the respect of the JND of 11 percent found by earlier literature. A new sine wave signal with the dominant frequencies is created. In the demo, we will let the attendees feel the differences between prerecorded and artificially created textures.

hi

[BibTex]

[BibTex]

2012


no image
Simon Game with Data-driven Visuo-audio-haptic Buttons

Castillo, P., Romano, J. M., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

2012


[BibTex]


no image
Haptic Vibration Feedback for a Teleoperated Ground Vehicle

Healey, S. K., McMahan, W., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

[BibTex]


no image
A Biofidelic CPR Manikin With Programmable Pneumatic Damping

Stanley, A. A., Healey, S. K., Maltese, M. R., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012, Finalist for Best Hands-on Demonstration Award (misc)

hi

[BibTex]

[BibTex]


no image
StrokeSleeve: Real-Time Vibrotactile Feedback for Motion Guidance

Bark, K., Cha, E., Tan, F., Jax, S. A., Buxbaum, L. J., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

[BibTex]


no image
Pen Tablet Drawing Program with Haptic Textures

Castillo, P., Romano, J. M., Culbertson, H., Mintz, M., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

[BibTex]


no image
Exploring Presentation Timing through Haptic Reminders

Tam, D., Kuchenbecker, K. J., MacLean, K., McGrenere, J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012 (misc)

hi

[BibTex]

[BibTex]


no image
HALO: Haptic Alerts for Low-hanging Obstacles in White Cane Navigation

Wang, Y., Koch, E., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012, Finalist for Best Hands-on Demonstration Award (misc)

hi

[BibTex]

[BibTex]


no image
VerroTeach: Visuo-audio-haptic Training for Dental Caries Detection

Maggio, M. P., Parajon, R., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Vancouver, Canada, March 2012, {B}est Demonstration Award (three-way tie) (misc)

hi

[BibTex]

[BibTex]