Header logo is


2017


On the Design of {LQR} Kernels for Efficient Controller Learning
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

am ics pn

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

2017


arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


Probabilistic Line Searches for Stochastic Optimization
Probabilistic Line Searches for Stochastic Optimization

Mahsereci, M., Hennig, P.

Journal of Machine Learning Research, 18(119):1-59, November 2017 (article)

pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Coupling Adaptive Batch Sizes with Learning Rates
Coupling Adaptive Batch Sizes with Learning Rates

Balles, L., Romero, J., Hennig, P.

In Proceedings Conference on Uncertainty in Artificial Intelligence (UAI) 2017, pages: 410-419, (Editors: Gal Elidan and Kristian Kersting), Association for Uncertainty in Artificial Intelligence (AUAI), Conference on Uncertainty in Artificial Intelligence (UAI), August 2017 (inproceedings)

Abstract
Mini-batch stochastic gradient descent and variants thereof have become standard for large-scale empirical risk minimization like the training of neural networks. These methods are usually used with a constant batch size chosen by simple empirical inspection. The batch size significantly influences the behavior of the stochastic optimization algorithm, though, since it determines the variance of the gradient estimates. This variance also changes over the optimization process; when using a constant batch size, stability and convergence is thus often enforced by means of a (manually tuned) decreasing learning rate schedule. We propose a practical method for dynamic batch size adaptation. It estimates the variance of the stochastic gradients and adapts the batch size to decrease the variance proportionally to the value of the objective function, removing the need for the aforementioned learning rate decrease. In contrast to recent related work, our algorithm couples the batch size to the learning rate, directly reflecting the known relationship between the two. On three image classification benchmarks, our batch size adaptation yields faster optimization convergence, while simultaneously simplifying learning rate tuning. A TensorFlow implementation is available.

ps pn

Code link (url) Project Page [BibTex]

Code link (url) Project Page [BibTex]


no image
Dynamic Time-of-Flight

Schober, M., Adam, A., Yair, O., Mazor, S., Nowozin, S.

Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 170-179, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (conference)

ei pn

DOI [BibTex]

DOI [BibTex]


Virtual vs. {R}eal: Trading Off Simulations and Physical Experiments in Reinforcement Learning with {B}ayesian Optimization
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics pn

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]


Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets

Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017), 54, pages: 528-536, Proceedings of Machine Learning Research, (Editors: Sign, Aarti and Zhu, Jerry), PMLR, April 2017 (conference)

pn

pdf link (url) Project Page [BibTex]

pdf link (url) Project Page [BibTex]


Early Stopping Without a Validation Set
Early Stopping Without a Validation Set

Mahsereci, M., Balles, L., Lassner, C., Hennig, P.

arXiv preprint arXiv:1703.09580, 2017 (article)

Abstract
Early stopping is a widely used technique to prevent poor generalization performance when training an over-expressive model by means of gradient-based optimization. To find a good point to halt the optimizer, a common practice is to split the dataset into a training and a smaller validation set to obtain an ongoing estimate of the generalization performance. In this paper we propose a novel early stopping criterion which is based on fast-to-compute, local statistics of the computed gradients and entirely removes the need for a held-out validation set. Our experiments show that this is a viable approach in the setting of least-squares and logistic regression as well as neural networks.

ps pn

link (url) Project Page Project Page [BibTex]


no image
Krylov Subspace Recycling for Fast Iterative Least-Squares in Machine Learning

Roos, F. D., Hennig, P.

arXiv preprint arXiv:1706.00241, 2017 (article)

Abstract
Solving symmetric positive definite linear problems is a fundamental computational task in machine learning. The exact solution, famously, is cubicly expensive in the size of the matrix. To alleviate this problem, several linear-time approximations, such as spectral and inducing-point methods, have been suggested and are now in wide use. These are low-rank approximations that choose the low-rank space a priori and do not refine it over time. While this allows linear cost in the data-set size, it also causes a finite, uncorrected approximation error. Authors from numerical linear algebra have explored ways to iteratively refine such low-rank approximations, at a cost of a small number of matrix-vector multiplications. This idea is particularly interesting in the many situations in machine learning where one has to solve a sequence of related symmetric positive definite linear problems. From the machine learning perspective, such deflation methods can be interpreted as transfer learning of a low-rank approximation across a time-series of numerical tasks. We study the use of such methods for our field. Our empirical results show that, on regression and classification problems of intermediate size, this approach can interpolate between low computational cost and numerical precision.

pn

link (url) Project Page [BibTex]


no image
Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings

Kanagawa, M., Sriperumbudur, B. K., Fukumizu, K.

Arxiv e-prints, arXiv:1709.00147v1 [math.NA], 2017 (article)

Abstract
This paper presents convergence analysis of kernel-based quadrature rules in misspecified settings, focusing on deterministic quadrature in Sobolev spaces. In particular, we deal with misspecified settings where a test integrand is less smooth than a Sobolev RKHS based on which a quadrature rule is constructed. We provide convergence guarantees based on two different assumptions on a quadrature rule: one on quadrature weights, and the other on design points. More precisely, we show that convergence rates can be derived (i) if the sum of absolute weights remains constant (or does not increase quickly), or (ii) if the minimum distance between distance design points does not decrease very quickly. As a consequence of the latter result, we derive a rate of convergence for Bayesian quadrature in misspecified settings. We reveal a condition on design points to make Bayesian quadrature robust to misspecification, and show that, under this condition, it may adaptively achieve the optimal rate of convergence in the Sobolev space of a lesser order (i.e., of the unknown smoothness of a test integrand), under a slightly stronger regularity condition on the integrand.

pn

arXiv [BibTex]

arXiv [BibTex]


no image
Efficiency of analytical and sampling-based uncertainty propagation in intensity-modulated proton therapy

Wahl, N., Hennig, P., Wieser, H. P., Bangert, M.

Physics in Medicine & Biology, 62(14):5790-5807, 2017 (article)

Abstract
The sensitivity of intensity-modulated proton therapy (IMPT) treatment plans to uncertainties can be quantified and mitigated with robust/min-max and stochastic/probabilistic treatment analysis and optimization techniques. Those methods usually rely on sparse random, importance, or worst-case sampling. Inevitably, this imposes a trade-off between computational speed and accuracy of the uncertainty propagation. Here, we investigate analytical probabilistic modeling (APM) as an alternative for uncertainty propagation and minimization in IMPT that does not rely on scenario sampling. APM propagates probability distributions over range and setup uncertainties via a Gaussian pencil-beam approximation into moments of the probability distributions over the resulting dose in closed form. It supports arbitrary correlation models and allows for efficient incorporation of fractionation effects regarding random and systematic errors. We evaluate the trade-off between run-time and accuracy of APM uncertainty computations on three patient datasets. Results are compared against reference computations facilitating importance and random sampling. Two approximation techniques to accelerate uncertainty propagation and minimization based on probabilistic treatment plan optimization are presented. Runtimes are measured on CPU and GPU platforms, dosimetric accuracy is quantified in comparison to a sampling-based benchmark (5000 random samples). APM accurately propagates range and setup uncertainties into dose uncertainties at competitive run-times (GPU ##IMG## [http://ej.iop.org/images/0031-9155/62/14/5790/pmbaa6ec5ieqn001.gif] {$\leqslant {5}$} min). The resulting standard deviation (expectation value) of dose show average global ##IMG## [http://ej.iop.org/images/0031-9155/62/14/5790/pmbaa6ec5ieqn002.gif] {$\gamma_{{3}\% / {3}~{\rm mm}}$} pass rates between 94.2% and 99.9% (98.4% and 100.0%). All investigated importance sampling strategies provided less accuracy at higher run-times considering only a single fraction. Considering fractionation, APM uncertainty propagation and treatment plan optimization was proven to be possible at constant time complexity, while run-times of sampling-based computations are linear in the number of fractions. Using sum sampling within APM, uncertainty propagation can only be accelerated at the cost of reduced accuracy in variance calculations. For probabilistic plan optimization, we were able to approximate the necessary pre-computations within seconds, yielding treatment plans of similar quality as gained from exact uncertainty propagation. APM is suited to enhance the trade-off between speed and accuracy in uncertainty propagation and probabilistic treatment plan optimization, especially in the context of fractionation. This brings fully-fledged APM computations within reach of clinical application.

pn

link (url) [BibTex]

link (url) [BibTex]


no image
Analytical probabilistic modeling of RBE-weighted dose for ion therapy

Wieser, H., Hennig, P., Wahl, N., Bangert, M.

Physics in Medicine and Biology (PMB), 62(23):8959-8982, 2017 (article)

pn

link (url) [BibTex]

link (url) [BibTex]


no image
Pattern Generation for Walking on Slippery Terrains

Khadiv, M., Moosavian, S. A. A., Herzog, A., Righetti, L.

In 2017 5th International Conference on Robotics and Mechatronics (ICROM), Iran, August 2017 (inproceedings)

Abstract
In this paper, we extend state of the art Model Predictive Control (MPC) approaches to generate safe bipedal walking on slippery surfaces. In this setting, we formulate walking as a trade off between realizing a desired walking velocity and preserving robust foot-ground contact. Exploiting this for- mulation inside MPC, we show that safe walking on various flat terrains can be achieved by compromising three main attributes, i. e. walking velocity tracking, the Zero Moment Point (ZMP) modulation, and the Required Coefficient of Friction (RCoF) regulation. Simulation results show that increasing the walking velocity increases the possibility of slippage, while reducing the slippage possibility conflicts with reducing the tip-over possibility of the contact and vice versa.

mg

link (url) [BibTex]

link (url) [BibTex]

2013


Quasi-Newton Methods: A New Direction
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

Journal of Machine Learning Research, 14(1):843-865, March 2013 (article)

Abstract
Four decades after their invention, quasi-Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

ei ps pn

website+code pdf link (url) [BibTex]

2013


website+code pdf link (url) [BibTex]


no image
The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

In Advances in Neural Information Processing Systems 26, pages: 1-9, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei pn

PDF [BibTex]

PDF [BibTex]


no image
Fast Probabilistic Optimization from Noisy Gradients

Hennig, P.

In Proceedings of The 30th International Conference on Machine Learning, JMLR W&CP 28(1), pages: 62–70, (Editors: S Dasgupta and D McAllester), ICML, 2013 (inproceedings)

ei pn

PDF [BibTex]

PDF [BibTex]


Nonparametric dynamics estimation for time periodic systems
Nonparametric dynamics estimation for time periodic systems

Klenske, E., Zeilinger, M., Schölkopf, B., Hennig, P.

In Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing, pages: 486-493 , 2013 (inproceedings)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Analytical probabilistic modeling for radiation therapy treatment planning

Bangert, M., Hennig, P., Oelfke, U.

Physics in Medicine and Biology, 58(16):5401-5419, 2013 (article)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Analytical probabilistic proton dose calculation and range uncertainties

Bangert, M., Hennig, P., Oelfke, U.

In 17th International Conference on the Use of Computers in Radiation Therapy, pages: 6-11, (Editors: A. Haworth and T. Kron), ICCR, 2013 (inproceedings)

ei pn

[BibTex]

[BibTex]


no image
AGILITY – Dynamic Full Body Locomotion and Manipulation with Autonomous Legged Robots

Hutter, M., Bloesch, M., Buchli, J., Semini, C., Bazeille, S., Righetti, L., Bohg, J.

In 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages: 1-4, IEEE, Linköping, Sweden, 2013 (inproceedings)

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Objective Functions for Manipulation

Kalakrishnan, M., Pastor, P., Righetti, L., Schaal, S.

In 2013 IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
We present an approach to learning objective functions for robotic manipulation based on inverse reinforcement learning. Our path integral inverse reinforcement learning algorithm can deal with high-dimensional continuous state-action spaces, and only requires local optimality of demonstrated trajectories. We use L 1 regularization in order to achieve feature selection, and propose an efficient algorithm to minimize the resulting convex objective function. We demonstrate our approach by applying it to two core problems in robotic manipulation. First, we learn a cost function for redundancy resolution in inverse kinematics. Second, we use our method to learn a cost function over trajectories, which is then used in optimization-based motion planning for grasping and manipulation tasks. Experimental results show that our method outperforms previous algorithms in high-dimensional settings.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Optimal distribution of contact forces with inverse-dynamics control

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

The International Journal of Robotics Research, 32(3):280-298, March 2013 (article)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of the contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In this contribution we develop an inverse-dynamics controller for floating-base robots under contact constraints that can minimize any combination of linear and quadratic costs in the contact constraints and the commands. Our main result is the exact analytical derivation of the controller. Such a result is particularly relevant for legged robots as it allows us to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, we can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The main advantages of the controller are its simplicity, computational efficiency and robustness to model inaccuracies. We present detailed experimental results on simulated humanoid and quadruped robots as well as a real quadruped robot. The experiments demonstrate that the controller can greatly improve the robustness of locomotion of the robots.1

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Controlled Reduction with Unactuated Cyclic Variables: Application to 3D Bipedal Walking with Passive Yaw Rotation

Gregg, R., Righetti, L.

IEEE Transactions on Automatic Control, 58(10):2679-2685, October 2013 (article)

Abstract
This technical note shows that viscous damping can shape momentum conservation laws in a manner that stabilizes yaw rotation and enables steering for underactuated 3D walking. We first show that unactuated cyclic variables can be controlled by passively shaped conservation laws given a stabilizing controller in the actuated coordinates. We then exploit this result to realize controlled geometric reduction with multiple unactuated cyclic variables. We apply this underactuated control strategy to a five-link 3D biped to produce exponentially stable straight-ahead walking and steering in the presence of passive yawing.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Learning Task Error Models for Manipulation

Pastor, P., Kalakrishnan, M., Binney, J., Kelly, J., Righetti, L., Sukhatme, G. S., Schaal, S.

In 2013 IEEE Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, 2013 (inproceedings)

Abstract
Precise kinematic forward models are important for robots to successfully perform dexterous grasping and manipulation tasks, especially when visual servoing is rendered infeasible due to occlusions. A lot of research has been conducted to estimate geometric and non-geometric parameters of kinematic chains to minimize reconstruction errors. However, kinematic chains can include non-linearities, e.g. due to cable stretch and motor-side encoders, that result in significantly different errors for different parts of the state space. Previous work either does not consider such non-linearities or proposes to estimate non-geometric parameters of carefully engineered models that are robot specific. We propose a data-driven approach that learns task error models that account for such unmodeled non-linearities. We argue that in the context of grasping and manipulation, it is sufficient to achieve high accuracy in the task relevant state space. We identify this relevant state space using previously executed joint configurations and learn error corrections for those. Therefore, our system is developed to generate subsequent executions that are similar to previous ones. The experiments show that our method successfully captures the non-linearities in the head kinematic chain (due to a counterbalancing spring) and the arm kinematic chains (due to cable stretch) of the considered experimental platform, see Fig. 1. The feasibility of the presented error learning approach has also been evaluated in independent DARPA ARM-S testing contributing to successfully complete 67 out of 72 grasping and manipulation tasks.

am mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2009


no image
Modelling the interplay of central pattern generation and sensory feedback in the neuromuscular control of running

Daley, M., Righetti, L., Ijspeert, A.

In Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology. Annual Main Meeting for the Society for Experimental Biology, 153, Glasgow, Scotland, 2009 (inproceedings)

mg

link (url) DOI [BibTex]

2009


link (url) DOI [BibTex]


no image
Adaptive Frequency Oscillators and Applications

Righetti, L., Buchli, J., Ijspeert, A.

The Open Cybernetics \& Systemics Journal, 3, pages: 64-69, 2009 (article)

Abstract
In this contribution we present a generic mechanism to transform an oscillator into an adaptive frequency oscillator, which can then dynamically adapt its parameters to learn the frequency of any periodic driving signal. Adaptation is done in a dynamic way: it is part of the dynamical system and not an offline process. This mechanism goes beyond entrainment since it works for any initial frequencies and the learned frequency stays encoded in the system even if the driving signal disappears. Interestingly, this mechanism can easily be applied to a large class of oscillators from harmonic oscillators to relaxation types and strange attractors. Several practical applications of this mechanism are then presented, ranging from adaptive control of compliant robots to frequency analysis of signals and construction of limit cycles of arbitrary shape.

mg

link (url) [BibTex]

link (url) [BibTex]

2008


no image
Pattern generators with sensory feedback for the control of quadruped locomotion

Righetti, L., Ijspeert, A.

In 2008 IEEE International Conference on Robotics and Automation, pages: 819-824, IEEE, Pasadena, USA, 2008 (inproceedings)

Abstract
Central pattern generators (CPGs) are becoming a popular model for the control of locomotion of legged robots. Biological CPGs are neural networks responsible for the generation of rhythmic movements, especially locomotion. In robotics, a systematic way of designing such CPGs as artificial neural networks or systems of coupled oscillators with sensory feedback inclusion is still missing. In this contribution, we present a way of designing CPGs with coupled oscillators in which we can independently control the ascending and descending phases of the oscillations (i.e. the swing and stance phases of the limbs). Using insights from dynamical system theory, we construct generic networks of oscillators able to generate several gaits under simple parameter changes. Then we introduce a systematic way of adding sensory feedback from touch sensors in the CPG such that the controller is strongly coupled with the mechanical system it controls. Finally we control three different simulated robots (iCub, Aibo and Ghostdog) using the same controller to show the effectiveness of the approach. Our simulations prove the importance of independent control of swing and stance duration. The strong mutual coupling between the CPG and the robot allows for more robust locomotion, even under non precise parameters and non-flat environment.

mg

link (url) DOI [BibTex]

2008


link (url) DOI [BibTex]


no image
Experimental Study of Limit Cycle and Chaotic Controllers for the Locomotion of Centipede Robots

Matthey, L., Righetti, L., Ijspeert, A.

In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages: 1860-1865, IEEE, Nice, France, sep 2008 (inproceedings)

Abstract
In this contribution we present a CPG (central pattern generator) controller based on coupled Rossler systems. It is able to generate both limit cycle and chaotic behaviors through bifurcation. We develop an experimental test bench to measure quantitatively the performance of different controllers on unknown terrains of increasing difficulty. First, we show that for flat terrains, open loop limit cycle systems are the most efficient (in terms of speed of locomotion) but that they are quite sensitive to environmental changes. Second, we show that sensory feedback is a crucial addition for unknown terrains. Third, we show that the chaotic controller with sensory feedback outperforms the other controllers in very difficult terrains and actually promotes the emergence of short synchronized movement patterns. All that is done using an unified framework for the generation of limit cycle and chaotic behaviors, where a simple parameter change can switch from one behavior to the other through bifurcation. Such flexibility would allow the automatic adaptation of the robot locomotion strategy to the terrain uncertainty.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A Dynamical System for Online Learning of Periodic Movements of Unknown Waveform and Frequency

Gams, A., Righetti, L., Ijspeert, A., Lenarčič, J.

In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 85-90, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
The paper presents a two-layered system for learning and encoding a periodic signal onto a limit cycle without any knowledge on the waveform and the frequency of the signal, and without any signal processing. The first dynamical system is responsible for extracting the main frequency of the input signal. It is based on adaptive frequency phase oscillators in a feedback structure, enabling us to extract separate frequency components without any signal processing, as all of the processing is embedded in the dynamics of the system itself. The second dynamical system is responsible for learning of the waveform. It has a built-in learning algorithm based on locally weighted regression, which adjusts the weights according to the amplitude of the input signal. By combining the output of the first system with the input of the second system we can rapidly teach new trajectories to robots. The systems works online for any periodic signal and can be applied in parallel to multiple dimensions. Furthermore, it can adapt to changes in frequency and shape, e.g. to non-stationary signals, and is computationally inexpensive. Results using simulated and hand-generated input signals, along with applying the algorithm to a HOAP-2 humanoid robot are presented.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Passive compliant quadruped robot using central pattern generators for locomotion control

Rutishauser, S., Sproewitz, A., Righetti, L., Ijspeert, A.

In 2008 IEEE International Conference on Biomedical Robotics and Biomechatronics, pages: 710-715, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
We present a new quadruped robot, ldquoCheetahrdquo, featuring three-segment pantographic legs with passive compliant knee joints. Each leg has two degrees of freedom - knee and hip joint can be actuated using proximal mounted RC servo motors, force transmission to the knee is achieved by means of a bowden cable mechanism. Simple electronics to command the actuators from a desktop computer have been designed in order to test the robot. A Central Pattern Generator (CPG) network has been implemented to generate different gaits. A parameter space search was performed and tested on the robot to optimize forward velocity.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Frequency analysis with coupled nonlinear oscillators

Buchli, J., Righetti, L., Ijspeert, A.

Physica D: Nonlinear Phenomena, 237(13):1705-1718, August 2008 (article)

Abstract
We present a method to obtain the frequency spectrum of a signal with a nonlinear dynamical system. The dynamical system is composed of a pool of adaptive frequency oscillators with negative mean-field coupling. For the frequency analysis, the synchronization and adaptation properties of the component oscillators are exploited. The frequency spectrum of the signal is reflected in the statistics of the intrinsic frequencies of the oscillators. The frequency analysis is completely embedded in the dynamics of the system. Thus, no pre-processing or additional parameters, such as time windows, are needed. Representative results of the numerical integration of the system are presented. It is shown, that the oscillators tune to the correct frequencies for both discrete and continuous spectra. Due to its dynamic nature the system is also capable to track non-stationary spectra. Further, we show that the system can be modeled in a probabilistic manner by means of a nonlinear Fokker–Planck equation. The probabilistic treatment is in good agreement with the numerical results, and provides a useful tool to understand the underlying mechanisms leading to convergence.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
A modular bio-inspired architecture for movement generation for the infant-like robot iCub

Degallier, S., Righetti, L., Natale, L., Nori, F., Metta, G., Ijspeert, A.

In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 795-800, IEEE, Scottsdale, USA, October 2008 (inproceedings)

Abstract
Movement generation in humans appears to be processed through a three-layered architecture, where each layer corresponds to a different level of abstraction in the representation of the movement. In this article, we will present an architecture reflecting this organization and based on a modular approach to human movement generation. We will show that our architecture is well suited for the online generation and modulation of motor behaviors, but also for switching between motor behaviors. This will be illustrated respectively through an interactive drumming task and through switching between reaching and crawling.

mg

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2005


no image
A dynamical systems approach to learning: a frequency-adaptive hopper robot

Buchli, J., Righetti, L., Ijspeert, A.

In Proceedings of the VIIIth European Conference on Artificial Life ECAL 2005, pages: 210-220, Springer Verlag, 2005 (inproceedings)

mg

[BibTex]

2005


[BibTex]


no image
From Dynamic Hebbian Learning for Oscillators to Adaptive Central Pattern Generators

Righetti, L., Buchli, J., Ijspeert, A.

In Proceedings of 3rd International Symposium on Adaptive Motion in Animals and Machines – AMAM 2005, Verlag ISLE, Ilmenau, 2005 (inproceedings)

mg

[BibTex]

[BibTex]