am
Hausman, K., Chebotar, Y., Schaal, S., Sukhatme, G., Lim, J.
Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets
In Proceedings from the conference "Neural Information Processing Systems 2017., (Editors: Guyon I. and Luxburg U.v. and Bengio S. and Wallach H. and Fergus R. and Vishwanathan S. and Garnett R.), Curran Associates, Inc., Advances in Neural Information Processing Systems 30 (NIPS), December 2017 (inproceedings)
am
ics
pn
Marco, A., Hennig, P., Schaal, S., Trimpe, S.
On the Design of LQR Kernels for Efficient Controller Learning
Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)
am
Bohg, J., Hausman, K., Sankaran, B., Brock, O., Kragic, D., Schaal, S., Sukhatme, G.
Interactive Perception: Leveraging Action in Perception and Perception in Action
IEEE Transactions on Robotics, 33, pages: 1273-1291, December 2017 (article)
am
ics
Doerr, A., Daniel, C., Nguyen-Tuong, D., Marco, A., Schaal, S., Toussaint, M., Trimpe, S.
Optimizing Long-term Predictions for Model-based Policy Search
Proceedings of 1st Annual Conference on Robot Learning (CoRL), 78, pages: 227-238, (Editors: Sergey Levine and Vincent Vanhoucke and Ken Goldberg), 1st Annual Conference on Robot Learning, November 2017 (conference)
pn
Mahsereci, M., Hennig, P.
Probabilistic Line Searches for Stochastic Optimization
Journal of Machine Learning Research, 18(119):1-59, November 2017 (article)
am
Li, W., Bohg, J., Fritz, M.
Acquiring Target Stacking Skills by Goal-Parameterized Deep Reinforcement Learning
arXiv, November 2017 (article) Submitted
am
Kappler, D., Meier, F., Ratliff, N., Schaal, S.
A New Data Source for Inverse Dynamics Learning
In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 2017 (inproceedings)
am
ei
Fiebig, K., Jayaram, V., Hesse, T., Blank, A., Peters, J., Grosse-Wentrup, M.
Bayesian Regression for Artifact Correction in Electroencephalography
Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 131-136, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)
am
ei
Grossberger, L., Hohmann, M. R., Peters, J., Grosse-Wentrup, M.
Investigating Music Imagery as a Cognitive Paradigm for Low-Cost Brain-Computer Interfaces
Proceedings of the 7th Graz Brain-Computer Interface Conference 2017 - From Vision to Reality, pages: 160-164, (Editors: Müller-Putz G.R., Steyrl D., Wriessnegger S. C., Scherer R.), Graz University of Technology, Austria, Graz Brain-Computer Interface Conference, September 2017 (conference)
am
Rubert, C., Kappler, D., Morales, A., Schaal, S., Bohg, J.
On the relevance of grasp metrics for predicting grasp success
In Proceedings of the IEEE/RSJ International Conference of Intelligent Robots and Systems, September 2017 (inproceedings) Accepted
am
ei
Akrour, R., Sorokin, D., Peters, J., Neumann, G.
Local Bayesian Optimization of Motor Skills
Proceedings of the 34th International Conference on Machine Learning, 70, pages: 41-50, Proceedings of Machine Learning Research, (Editors: Doina Precup, Yee Whye Teh), PMLR, International Conference on Machine Learning (ICML), August 2017 (conference)
am
Chebotar, Y., Hausman, K., Zhang, M., Sukhatme, G., Schaal, S., Levine, S.
Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning
Proceedings of the 34th International Conference on Machine Learning, 70, Proceedings of Machine Learning Research, (Editors: Doina Precup, Yee Whye Teh), PMLR, International Conference on Machine Learning (ICML), August 2017 (conference)
ps
pn
Balles, L., Romero, J., Hennig, P.
Coupling Adaptive Batch Sizes with Learning Rates
In Proceedings Conference on Uncertainty in Artificial Intelligence (UAI) 2017, pages: 410-419, (Editors: Gal Elidan and Kristian Kersting), Association for Uncertainty in Artificial Intelligence (AUAI), Conference on Uncertainty in Artificial Intelligence (UAI), August 2017 (inproceedings)
ei
pn
Schober, M., Adam, A., Yair, O., Mazor, S., Nowozin, S.
Dynamic Time-of-Flight
Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 170-179, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (conference)
am
ics
Trimpe, S.
Event-based State Estimation: An Emulation-based Approach
IET Control Theory & Applications, 11(11):1684-1693, July 2017 (article)
am
ics
Doerr, A., Nguyen-Tuong, D., Marco, A., Schaal, S., Trimpe, S.
Model-Based Policy Search for Automatic Tuning of Multivariate PID Controllers
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 5295-5301, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)
am
Rai, A., Sutanto, G., Schaal, S., Meier, F.
Learning Feedback Terms for Reactive Planning and Control
Proceedings 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (conference)
am
ics
pn
Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)
am
Garcia Cifuentes, C., Issac, J., Wüthrich, M., Schaal, S., Bohg, J.
Probabilistic Articulated Real-Time Tracking for Robot Manipulation
IEEE Robotics and Automation Letters (RA-L), 2(2):577-584, April 2017 (article)
pn
Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017), 54, pages: 528-536, Proceedings of Machine Learning Research, (Editors: Sign, Aarti and Zhu, Jerry), PMLR, April 2017 (conference)
am
ei
Wang, Z., Boularias, A., Mülling, K., Schölkopf, B., Peters, J.
Anticipatory Action Selection for Human-Robot Table Tennis
Artificial Intelligence, 247, pages: 399-414, 2017, Special Issue on AI and Robotics (article)
ps
pn
Mahsereci, M., Balles, L., Lassner, C., Hennig, P.
Early Stopping Without a Validation Set
arXiv preprint arXiv:1703.09580, 2017 (article)
pn
Roos, F. D., Hennig, P.
Krylov Subspace Recycling for Fast Iterative Least-Squares in Machine Learning
arXiv preprint arXiv:1706.00241, 2017 (article)
pn
Kanagawa, M., Sriperumbudur, B. K., Fukumizu, K.
Convergence Analysis of Deterministic Kernel-Based Quadrature Rules in Misspecified Settings
Arxiv e-prints, arXiv:1709.00147v1 [math.NA], 2017 (article)
am
ei
Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J., Schaal, S.
Robot Learning
In Springer Handbook of Robotics, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)
ei
pn
sf
Klenske, E. D.
Nonparametric Disturbance Correction and Nonlinear Dual Control
(24098), ETH Zurich, 2017 (phdthesis)
ei
pn
Gretton, A., Hennig, P., Rasmussen, C., Schölkopf, B.
New Directions for Learning with Kernels and Gaussian Processes (Dagstuhl Seminar 16481)
Dagstuhl Reports, 6(11):142-167, 2017 (book)
pn
Wahl, N., Hennig, P., Wieser, H. P., Bangert, M.
Efficiency of analytical and sampling-based uncertainty propagation in intensity-modulated proton therapy
Physics in Medicine & Biology, 62(14):5790-5807, 2017 (article)
pn
Wieser, H., Hennig, P., Wahl, N., Bangert, M.
Analytical probabilistic modeling of RBE-weighted dose for ion therapy
Physics in Medicine and Biology (PMB), 62(23):8959-8982, 2017 (article)
am
Schaal, S., Sternad, D.
Programmable pattern generators
In 3rd International Conference on Computational Intelligence in Neuroscience, pages: 48-51, Research Triangle Park, NC, Oct. 24-28, October 1998, clmc (inproceedings)
am
Vijayakumar, S., Schaal, S.
Robust local learning in high dimensional spaces
In 5th Joint Symposium on Neural Computation, pages: 186-193, Institute for Neural Computation, University of California, San Diego, San Diego, CA, 1998, clmc (inproceedings)
am
Schaal, S., Vijayakumar, S., Atkeson, C. G.
Local dimensionality reduction
In Advances in Neural Information Processing Systems 10, pages: 633-639, (Editors: Jordan, M. I.;Kearns, M. J.;Solla, S. A.), MIT Press, Cambridge, MA, 1998, clmc (inproceedings)
am
Schaal, S., Atkeson, C. G.
Constructive incremental learning from only local information
Neural Computation, 10(8):2047-2084, 1998, clmc (article)
am
Shibata, T., Schaal, S.
Biomimetic gaze stabilization based on a study of the vestibulocerebellum
In European Workshop on Learning Robots, pages: 84-94, Edinburgh, UK, 1998, clmc (inproceedings)
am
Shibata, T., Schaal, S.
Towards biomimetic vision
In International Conference on Intelligence Robots and Systems, pages: 872-879, Victoria, Canada, 1998, clmc (inproceedings)
am
Vijayakumar, S., Schaal, S.
Local adaptive subspace regression
Neural Processing Letters, 7(3):139-149, 1998, clmc (article)
am
Ehrlenspiel, K., Schaal, S.
Ins CAD integrierte Kostenkalkulation (CAD-Integrated Cost Calculation)
Konstruktion 44, 12, pages: 407-414, 1992, clmc (article)
am
Schaal, S.
Integrierte Wissensverarbeitung mit CAD am Beispiel der konstruktionsbegleitenden Kalkulation (Ways to smarter CAD Systems)
Hanser 1992. (Konstruktionstechnik München Band 8). Zugl. München: TU Diss., München, 1992, clmc (book)
am
Schaal, S.
Informationssysteme mit CAD (Information systems within CAD)
In CAD/CAM Grundlagen, pages: 199-204, (Editors: Milberg, J.), Springer, Buchreihe CIM-TT. Berlin, 1992, clmc (inbook)
am
Schaal, S., Atkeson, C. G., Botros, S.
What should be learned?
In Proceedings of Seventh Yale Workshop on Adaptive and Learning Systems, pages: 199-204, New Haven, CT, May 20-22, 1992, clmc (inproceedings)