Header logo is


2018


no image
Kernel Recursive ABC: Point Estimation with Intractable Likelihood

Kajihara, T., Kanagawa, M., Yamazaki, K., Fukumizu, K.

Proceedings of the 35th International Conference on Machine Learning, pages: 2405-2414, PMLR, July 2018 (conference)

Abstract
We propose a novel approach to parameter estimation for simulator-based statistical models with intractable likelihood. Our proposed method involves recursive application of kernel ABC and kernel herding to the same observed data. We provide a theoretical explanation regarding why the approach works, showing (for the population setting) that, under a certain assumption, point estimates obtained with this method converge to the true parameter, as recursion proceeds. We have conducted a variety of numerical experiments, including parameter estimation for a real-world pedestrian flow simulator, and show that in most cases our method outperforms existing approaches.

pn

Paper [BibTex]

2018


Paper [BibTex]


Thumb xl tease pic
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients

Balles, L., Hennig, P.

In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 (inproceedings) Accepted

Abstract
The ADAM optimizer is exceedingly popular in the deep learning community. Often it works very well, sometimes it doesn't. Why? We interpret ADAM as a combination of two aspects: for each weight, the update direction is determined by the sign of stochastic gradients, whereas the update magnitude is determined by an estimate of their relative variance. We disentangle these two aspects and analyze them in isolation, gaining insight into the mechanisms underlying ADAM. This analysis also extends recent results on adverse effects of ADAM on generalization, isolating the sign aspect as the problematic one. Transferring the variance adaptation to SGD gives rise to a novel method, completing the practitioner's toolbox for problems where ADAM fails.

pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]

2017


Thumb xl fig toyex lqr1kernel 1
On the Design of LQR Kernels for Efficient Controller Learning

Marco, A., Hennig, P., Schaal, S., Trimpe, S.

Proceedings of the 56th IEEE Annual Conference on Decision and Control (CDC), pages: 5193-5200, IEEE, IEEE Conference on Decision and Control, December 2017 (conference)

Abstract
Finding optimal feedback controllers for nonlinear dynamic systems from data is hard. Recently, Bayesian optimization (BO) has been proposed as a powerful framework for direct controller tuning from experimental trials. For selecting the next query point and finding the global optimum, BO relies on a probabilistic description of the latent objective function, typically a Gaussian process (GP). As is shown herein, GPs with a common kernel choice can, however, lead to poor learning outcomes on standard quadratic control problems. For a first-order system, we construct two kernels that specifically leverage the structure of the well-known Linear Quadratic Regulator (LQR), yet retain the flexibility of Bayesian nonparametric learning. Simulations of uncertain linear and nonlinear systems demonstrate that the LQR kernels yield superior learning performance.

am ics pn

arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]

2017


arXiv PDF On the Design of LQR Kernels for Efficient Controller Learning - CDC presentation DOI Project Page [BibTex]


Thumb xl teaser
Coupling Adaptive Batch Sizes with Learning Rates

Balles, L., Romero, J., Hennig, P.

In Proceedings Conference on Uncertainty in Artificial Intelligence (UAI) 2017, pages: 410-419, (Editors: Gal Elidan and Kristian Kersting), Association for Uncertainty in Artificial Intelligence (AUAI), Conference on Uncertainty in Artificial Intelligence (UAI), August 2017 (inproceedings)

Abstract
Mini-batch stochastic gradient descent and variants thereof have become standard for large-scale empirical risk minimization like the training of neural networks. These methods are usually used with a constant batch size chosen by simple empirical inspection. The batch size significantly influences the behavior of the stochastic optimization algorithm, though, since it determines the variance of the gradient estimates. This variance also changes over the optimization process; when using a constant batch size, stability and convergence is thus often enforced by means of a (manually tuned) decreasing learning rate schedule. We propose a practical method for dynamic batch size adaptation. It estimates the variance of the stochastic gradients and adapts the batch size to decrease the variance proportionally to the value of the objective function, removing the need for the aforementioned learning rate decrease. In contrast to recent related work, our algorithm couples the batch size to the learning rate, directly reflecting the known relationship between the two. On three image classification benchmarks, our batch size adaptation yields faster optimization convergence, while simultaneously simplifying learning rate tuning. A TensorFlow implementation is available.

ps pn

Code link (url) Project Page [BibTex]

Code link (url) Project Page [BibTex]


no image
Dynamic Time-of-Flight

Schober, M., Adam, A., Yair, O., Mazor, S., Nowozin, S.

Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 170-179, IEEE, Piscataway, NJ, USA, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 (conference)

ei pn

DOI [BibTex]

DOI [BibTex]


Thumb xl this one
Virtual vs. Real: Trading Off Simulations and Physical Experiments in Reinforcement Learning with Bayesian Optimization

Marco, A., Berkenkamp, F., Hennig, P., Schoellig, A. P., Krause, A., Schaal, S., Trimpe, S.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 1557-1563, IEEE, Piscataway, NJ, USA, IEEE International Conference on Robotics and Automation (ICRA), May 2017 (inproceedings)

am ics pn

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]

PDF arXiv ICRA 2017 Spotlight presentation Virtual vs. Real - Video explanation DOI Project Page [BibTex]


Thumb xl screen shot 2017 07 20 at 12.31.00 pm
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets

Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017), 54, pages: 528-536, Proceedings of Machine Learning Research, (Editors: Sign, Aarti and Zhu, Jerry), PMLR, April 2017 (conference)

pn

pdf link (url) Project Page [BibTex]

pdf link (url) Project Page [BibTex]

2013


no image
The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

In Advances in Neural Information Processing Systems 26, pages: 1-9, (Editors: C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger), 27th Annual Conference on Neural Information Processing Systems (NIPS), 2013 (inproceedings)

ei pn

PDF [BibTex]

2013


PDF [BibTex]


no image
Fast Probabilistic Optimization from Noisy Gradients

Hennig, P.

In Proceedings of The 30th International Conference on Machine Learning, JMLR W&CP 28(1), pages: 62–70, (Editors: S Dasgupta and D McAllester), ICML, 2013 (inproceedings)

ei pn

PDF [BibTex]

PDF [BibTex]


Thumb xl error vs dt fine
Nonparametric dynamics estimation for time periodic systems

Klenske, E., Zeilinger, M., Schölkopf, B., Hennig, P.

In Proceedings of the 51st Annual Allerton Conference on Communication, Control, and Computing, pages: 486-493 , 2013 (inproceedings)

ei pn

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Analytical probabilistic proton dose calculation and range uncertainties

Bangert, M., Hennig, P., Oelfke, U.

In 17th International Conference on the Use of Computers in Radiation Therapy, pages: 6-11, (Editors: A. Haworth and T. Kron), ICCR, 2013 (inproceedings)

ei pn

[BibTex]

[BibTex]