Header logo is


2016


no image
Supplemental material for ’Communication Rate Analysis for Event-based State Estimation’

Ebner, S., Trimpe, S.

Max Planck Institute for Intelligent Systems, January 2016 (techreport)

am ics

PDF [BibTex]

2016


PDF [BibTex]

2015


no image
Distributed Event-based State Estimation

Trimpe, S.

Max Planck Institute for Intelligent Systems, November 2015 (techreport)

Abstract
An event-based state estimation approach for reducing communication in a networked control system is proposed. Multiple distributed sensor-actuator-agents observe a dynamic process and sporadically exchange their measurements and inputs over a bus network. Based on these data, each agent estimates the full state of the dynamic system, which may exhibit arbitrary inter-agent couplings. Local event-based protocols ensure that data is transmitted only when necessary to meet a desired estimation accuracy. This event-based scheme is shown to mimic a centralized Luenberger observer design up to guaranteed bounds, and stability is proven in the sense of bounded estimation errors for bounded disturbances. The stability result extends to the distributed control system that results when the local state estimates are used for distributed feedback control. Simulation results highlight the benefit of the event-based approach over classical periodic ones in reducing communication requirements.

am ics

arXiv [BibTex]

2015


arXiv [BibTex]

2010


ImageFlow: Streaming Image Search
ImageFlow: Streaming Image Search

Jampani, V., Ramos, G., Drucker, S.

MSR-TR-2010-148, Microsoft Research, Redmond, 2010 (techreport)

Abstract
Traditional grid and list representations of image search results are the dominant interaction paradigms that users face on a daily basis, yet it is unclear that such paradigms are well-suited for experiences where the user‟s task is to browse images for leisure, to discover new information or to seek particular images to represent ideas. We introduce ImageFlow, a novel image search user interface that ex-plores a different alternative to the traditional presentation of image search results. ImageFlow presents image results on a canvas where we map semantic features (e.g., rele-vance, related queries) to the canvas‟ spatial dimensions (e.g., x, y, z) in a way that allows for several levels of en-gagement – from passively viewing a stream of images, to seamlessly navigating through the semantic space and ac-tively collecting images for sharing and reuse. We have implemented our system as a fully functioning prototype, and we report on promising, preliminary usage results.

ps

url pdf link (url) [BibTex]

2010


url pdf link (url) [BibTex]

2005


no image
Linear and Nonlinear Estimation models applied to Hemodynamic Model

Theodorou, E.

Technical Report-2005-1, Computational Action and Vision Lab University of Minnesota, 2005, clmc (techreport)

Abstract
The relation between BOLD signal and neural activity is still poorly understood. The Gaussian Linear Model known as GLM is broadly used in many fMRI data analysis for recovering the underlying neural activity. Although GLM has been proved to be a really useful tool for analyzing fMRI data it can not be used for describing the complex biophysical process of neural metabolism. In this technical report we make use of a system of Stochastic Differential Equations that is based on Buxton model [1] for describing the underlying computational principles of hemodynamic process. Based on this SDE we built a Kalman Filter estimator so as to estimate the induced neural signal as well as the blood inflow under physiologic and sensor noise. The performance of Kalman Filter estimator is investigated under different physiologic noise characteristics and measurement frequencies.

am

PDF [BibTex]

2005


PDF [BibTex]