Header logo is


2009


no image
Displaying Realistic Contact Accelerations Via a Dedicated Vibration Actuator

McMahan, W., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE World Haptics Conference, Salt Lake City, Utah, Proc. IEEE World Haptics Conference, pp. 613–614, Salt Lake City, Utah, USA, March 2009, {B}est Demonstration Award (misc)

hi

[BibTex]

2009


[BibTex]


no image
The iTorqU 1.0 and 2.0

Winfree, K. N., Gewirtz, J., Mather, T., Fiene, J., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE World Haptics Conference, Salt Lake City, Utah, March 2009 (misc)

hi

[BibTex]

[BibTex]


no image
Vibrotactile Feedback System for Intuitive Upper-Limb Rehabilitation

Kapur, P., Premakumar, S., Jax, S. A., Buxbaum, L. J., Dawson, A. M., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE World Haptics Conference, Salt Lake City, Utah, USA, Proc. IEEE World Haptics Conference, pp. 621–622, March 2009 (misc)

hi

[BibTex]

[BibTex]


no image
The SlipGlove

Romano, J. M., Gray, S. R., Jacobs, N. T., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE World Haptics Conference, Salt Lake City, Utah, March 2009 (misc)

hi

[BibTex]

[BibTex]


no image
Real-Time Graphic and Haptic Simulation of Deformable Tissue Puncture

Romano, J. M., Safonova, A., Kuchenbecker, K. J.

Hands-on demonstration presented at Medicine Meets Virtual Reality, Long Beach, California, USA, January 2009 (misc)

hi

[BibTex]

[BibTex]


no image
An introduction to Kernel Learning Algorithms

Gehler, P., Schölkopf, B.

In Kernel Methods for Remote Sensing Data Analysis, pages: 25-48, 2, (Editors: Gustavo Camps-Valls and Lorenzo Bruzzone), Wiley, New York, NY, USA, 2009 (inbook)

Abstract
Kernel learning algorithms are currently becoming a standard tool in the area of machine learning and pattern recognition. In this chapter we review the fundamental theory of kernel learning. As the basic building block we introduce the kernel function, which provides an elegant and general way to compare possibly very complex objects. We then review the concept of a reproducing kernel Hilbert space and state the representer theorem. Finally we give an overview of the most prominent algorithms, which are support vector classification and regression, Gaussian Processes and kernel principal analysis. With multiple kernel learning and structured output prediction we also introduce some more recent advancements in the field.

ei ps

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Visual Object Discovery

Sinha, P., Balas, B., Ostrovsky, Y., Wulff, J.

In Object Categorization: Computer and Human Vision Perspectives, pages: 301-323, (Editors: S. J. Dickinson, A. Leonardis, B. Schiele, M.J. Tarr), Cambridge University Press, 2009 (inbook)

ps

link (url) [BibTex]

link (url) [BibTex]