Header logo is


2020


AirCapRL: Autonomous Aerial Human Motion Capture Using Deep Reinforcement Learning
AirCapRL: Autonomous Aerial Human Motion Capture Using Deep Reinforcement Learning

Tallamraju, R., Saini, N., Bonetto, E., Pabst, M., Liu, Y. T., Black, M., Ahmad, A.

IEEE Robotics and Automation Letters, IEEE Robotics and Automation Letters, 5(4):6678 - 6685, IEEE, October 2020, Also accepted and presented in the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (article)

Abstract
In this letter, we introduce a deep reinforcement learning (DRL) based multi-robot formation controller for the task of autonomous aerial human motion capture (MoCap). We focus on vision-based MoCap, where the objective is to estimate the trajectory of body pose, and shape of a single moving person using multiple micro aerial vehicles. State-of-the-art solutions to this problem are based on classical control methods, which depend on hand-crafted system, and observation models. Such models are difficult to derive, and generalize across different systems. Moreover, the non-linearities, and non-convexities of these models lead to sub-optimal controls. In our work, we formulate this problem as a sequential decision making task to achieve the vision-based motion capture objectives, and solve it using a deep neural network-based RL method. We leverage proximal policy optimization (PPO) to train a stochastic decentralized control policy for formation control. The neural network is trained in a parallelized setup in synthetic environments. We performed extensive simulation experiments to validate our approach. Finally, real-robot experiments demonstrate that our policies generalize to real world conditions.

ps

link (url) DOI [BibTex]

2020


link (url) DOI [BibTex]


3D Morphable Face Models - Past, Present and Future
3D Morphable Face Models - Past, Present and Future

Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., Vetter, T.

ACM Transactions on Graphics, 39(5), August 2020 (article)

Abstract
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.

ps

project page pdf preprint DOI [BibTex]

project page pdf preprint DOI [BibTex]


Analysis of motor development within the first year of life: 3-{D} motion tracking without markers for early detection of developmental disorders
Analysis of motor development within the first year of life: 3-D motion tracking without markers for early detection of developmental disorders

Parisi, C., Hesse, N., Tacke, U., Rocamora, S. P., Blaschek, A., Hadders-Algra, M., Black, M. J., Heinen, F., Müller-Felber, W., Schroeder, A. S.

Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 63, pages: 881–890, July 2020 (article)

Abstract
Children with motor development disorders benefit greatly from early interventions. An early diagnosis in pediatric preventive care (U2–U5) can be improved by automated screening. Current approaches to automated motion analysis, however, are expensive, require lots of technical support, and cannot be used in broad clinical application. Here we present an inexpensive, marker-free video analysis tool (KineMAT) for infants, which digitizes 3‑D movements of the entire body over time allowing automated analysis in the future. Three-minute video sequences of spontaneously moving infants were recorded with a commercially available depth-imaging camera and aligned with a virtual infant body model (SMIL model). The virtual image generated allows any measurements to be carried out in 3‑D with high precision. We demonstrate seven infants with different diagnoses. A selection of possible movement parameters was quantified and aligned with diagnosis-specific movement characteristics. KineMAT and the SMIL model allow reliable, three-dimensional measurements of spontaneous activity in infants with a very low error rate. Based on machine-learning algorithms, KineMAT can be trained to automatically recognize pathological spontaneous motor skills. It is inexpensive and easy to use and can be developed into a screening tool for preventive care for children.

ps

pdf on-line w/ sup mat DOI [BibTex]

pdf on-line w/ sup mat DOI [BibTex]


Learning and Tracking the {3D} Body Shape of Freely Moving Infants from {RGB-D} sequences
Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences

Hesse, N., Pujades, S., Black, M., Arens, M., Hofmann, U., Schroeder, S.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 42(10):2540-2551, 2020 (article)

Abstract
Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.

ps

pdf Journal DOI [BibTex]

pdf Journal DOI [BibTex]


Biocompatible magnetic micro‐ and nanodevices: Fabrication of FePt nanopropellers and cell transfection
Biocompatible magnetic micro‐ and nanodevices: Fabrication of FePt nanopropellers and cell transfection

Kadiri, V. M., Bussi, C., Holle, A. W., Son, K., Kwon, H., Schütz, G., Gutierrez, M. G., Fischer, P.

Adv. Mat., 32(2001114), May 2020 (article)

Abstract
The application of nanoparticles for drug or gene delivery promises benefits in the form of single‐cell‐specific therapeutic and diagnostic capabilities. Many methods of cell transfection rely on unspecific means to increase the transport of genetic material into cells. Targeted transport is in principle possible with magnetically propelled micromotors, which allow responsive nanoscale actuation and delivery. However, many commonly used magnetic materials (e.g., Ni and Co) are not biocompatible, possess weak magnetic remanence (Fe3O4), or cannot be implemented in nanofabrication schemes (NdFeB). Here, it is demonstrated that co‐depositing iron (Fe) and platinum (Pt) followed by one single annealing step, without the need for solution processing, yields ferromagnetic FePt nanomotors that are noncytotoxic, biocompatible, and possess a remanence and magnetization that rival those of permanent NdFeB micromagnets. Active cell targeting and magnetic transfection of lung carcinoma cells are demonstrated using gradient‐free rotating millitesla fields to drive the FePt nanopropellers. The carcinoma cells express enhanced green fluorescent protein after internalization and cell viability is unaffected by the presence of the FePt nanopropellers. The results establish FePt, prepared in the L10 phase, as a promising magnetic material for biomedical applications with superior magnetic performance, especially for micro‐ and nanodevices.

pf mms

link (url) DOI [BibTex]


General Movement Assessment from videos of computed {3D} infant body models is equally effective compared to conventional {RGB} Video rating
General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB Video rating

Schroeder, S., Hesse, N., Weinberger, R., Tacke, U., Gerstl, L., Hilgendorff, A., Heinen, F., Arens, M., Bodensteiner, C., Dijkstra, L. J., Pujades, S., Black, M., Hadders-Algra, M.

Early Human Development, 144, May 2020 (article)

Abstract
Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training hampering its implementation in clinical routine. This inspired a world-wide quest for automated GMA. Aim: To test whether a low-cost, marker-less system for three-dimensional motion capture from RGB depth sequences using a whole body infant model may serve as the basis for automated GMA. Study design: Clinical case study at an academic neurodevelopmental outpatient clinic. Subjects: Twenty-nine high-risk infants were recruited and assessed at their clinical follow-up at 2-4 month corrected age (CA). Their neurodevelopmental outcome was assessed regularly up to 12-31 months CA. Outcome measures: GMA according to Hadders-Algra by a masked GMA-expert of conventional and computed 3D body model (“SMIL motion”) videos of the same GMs. Agreement between both GMAs was assessed, and sensitivity and specificity of both methods to predict CP at ≥12 months CA. Results: The agreement of the two GMA ratings was substantial, with κ=0.66 for the classification of definitely abnormal (DA) GMs and an ICC of 0.887 (95% CI 0.762;0.947) for a more detailed GM-scoring. Five children were diagnosed with CP (four bilateral, one unilateral CP). The GMs of the child with unilateral CP were twice rated as mildly abnormal. DA-ratings of both videos predicted bilateral CP well: sensitivity 75% and 100%, specificity 88% and 92% for conventional and SMIL motion videos, respectively. Conclusions: Our computed infant 3D full body model is an attractive starting point for automated GMA in infants at risk of CP.

ps

DOI [BibTex]

DOI [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), (128):873-890, April 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

ps

pdf DOI poster link (url) DOI [BibTex]

pdf DOI poster link (url) DOI [BibTex]


Real Time Trajectory Prediction Using Deep Conditional Generative Models
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

ei ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


no image
Effect of the soft layer thickness of magnetization reversal process of exchange-spring nanomagnet patterns

Son, K., Schütz, G., Goering, E.

{Current Applied Physics}, 20(4):477-483, Elsevier B.V., Amsterdam, 2020 (article)

mms

DOI [BibTex]


{Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination}
Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination

Guang, Y., Bykova, I., Liu, Y., Yu, G., Goering, E., Weigand, M., Gräfe, J., Kim, S. K., Zhang, J., Zhang, H., Yan, Z., Wan, C., Feng, J., Wang, X., Guo, C., Wei, H., Peng, Y., Tserkovnyak, Y., Han, X., Schütz, G.

{Nature Communications}, 11, Nature Publishing Group, London, 2020 (article)

Abstract
Skyrmions, magnetic textures with topological stability, hold promises for high-density and energy-efficient information storage devices owing to their small size and low driving-current density. Precise creation of a single nanoscale skyrmion is a prerequisite to further understand the skyrmion physics and tailor skyrmion-based applications. Here, we demonstrate the creation of individual skyrmions at zero-field in an exchange-biased magnetic multilayer with exposure to soft X-rays. In particular, a single skyrmion with 100-nm size can be created at the desired position using a focused X-ray spot of sub-50-nm size. This single skyrmion creation is driven by the X-ray-induced modification of the antiferromagnetic order and the corresponding exchange bias. Furthermore, artificial skyrmion lattices with various arrangements can be patterned using X-ray. These results demonstrate the potential of accurate optical control of single skyrmion at sub-100 nm scale. We envision that X-ray could serve as a versatile tool for local manipulation of magnetic orders.

mms

DOI [BibTex]

DOI [BibTex]


{Tuning the magnetic properties of permalloy-based magnetoplasmonic crystals for sensor applications}
Tuning the magnetic properties of permalloy-based magnetoplasmonic crystals for sensor applications

Murzin, D. V., Belyaev, V. K., Groß, F., Gräfe, J., Rivas, M., Rodionova, V. V.

{Japanese Journal of Applied Physics}, 59(SE), IOP Publishing Ltd, Bristol, England, 2020 (article)

Abstract
Miniature magnetic sensors based on magnetoplasmonic crystals (MPlCs) exhibit high sensitivity and high spatial resolution, which can be obtained by the excitation of surface plasmon polaritons. A field dependence of surface plasmon polaritons' enhanced magneto-optical response strongly correlates with magnetic properties of MPlCs that can be tuned by changing spatial parameters, such as the period and height of diffraction gratings and thicknesses of functional layers. This work compares the magnetic properties of MPlCs based on Ni80Fe20 (permalloy) obtained from local (longitudinal magneto-optical Kerr effect) and bulk (vibrating-sample magnetometry) measurements and demonstrates an ability to control sensors' performance through changing the magnetic properties of the MPlCs. The influence of the substrate's geometry (planar or sinusoidal and trapezoidal diffraction grating profiles) and the thickness of the surface layer is examined.

mms

DOI [BibTex]

DOI [BibTex]


no image
Specific isotope-responsive breathing transition in flexible metal-organic frameworks

Kim, J. Y., Park, J., Ha, J., Jung, M., Wallacher, D., Franz, A., Balderas-Xicohténcatl, R., Hirscher, M., Kang, S. G., Park, J. T., Oh, I. H., Moon, H. R., Oh, H.

Journal of the American Chemical Society, 142(31):13278-13282, American Chemical Society, Washington, DC, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Element-resolved study of the evolution of magnetic response in FexN compounds

Chen, Y., Gölden, D., Dirba, I., Huang, M., Gutfleisch, O., Nagel, P., Merz, M., Schuppler, S., Schütz, G., Alff, L., Goering, E.

{Journal of Magnetism and Magnetic Materials}, 498, NH, Elsevier, Amsterdam, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
The role of temperature and drive current in skyrmion dynamics

Litzius, K., Leliaert, J., Bassirian, P., Rodrigues, D., Kromin, S., Lemesh, I., Zazvorka, J., Lee, K., Mulkers, J., Kerber, N., Heinze, D., Keil, N., Reeve, R. M., Weigand, M., Van Waeyenberge, B., Schütz, G., Everschor-Sitte, K., Beach, G. S. D., Kläui, M.

{Nature Electronics}, 3(1):30-36, Springer Nature, London, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic flux penetration into micron-sized superconductor/ferromagnet bilayers

Simmendinger, J., Weigand, M., Schütz, G., Albrecht, J.

{Superconductor Science and Technology}, 33(2), IOP Pub., Bristol, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications
Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications

Souri, H., Banerjee, H., Jusufi, A., Radacsi, N., Stokes, A. A., Park, I., Sitti, M., Amjadi, M.

Advanced Intelligent Systems, 2020 (article)

bio pi

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Demonstration of k-vector selective microscopy for nanoscale mapping of higher order spin wave modes

Träger, N., Gruszecki, P., Lisiecki, F., Groß, F., Förster, J., Weigand, M., Glowinski, H., Kuswik, P., Dubowik, J., Krawczyk, M., Gräfe, J.

Nanoscale, 12(33):17238-17244, Royal Society of Chemistry, Cambridge, UK, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Direct observation of spin-wave focusing by a Fresnel lens

Gräfe, J., Gruszecki, P., Zelent, M., Decker, M., Keskinbora, K., Noske, M., Gawronski, P., Stoll, H., Weigand, M., Krawczyk, M., Back, C. H., Goering, E. J., Schütz, G.

Physical Review B, 102(2), American Physical Society, Woodbury, NY, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Bandgap-adjustment and enhanced surface photovoltage in Y-substituted LaTaIVO2N

Bubeck, C., Widenmeyer, M., De Denko, A. T., Richter, G., Coduri, M., Salas-Colera, E., Goering, E., Zhang, H., Yoon, S., Osterloh, F. E., Weidenkaff, A.

Journal of Materials Chemistry A, 8(23):11837-11848, Royal Society of Chemistry, Cambridge, UK, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Fabrication and temperature-dependent magnetic properties of large-area L10-FePt/Co exchange-spring magnet nanopatterns

Son, K., Schütz, G.

{Physica E: Low-Dimensional Systems And Nanostructures}, 115, North-Holland, Amsterdam, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Research trend of metal-organic frameworks for magnetic refrigeration materials application

Kim, S., Son, K., Oh, H.

Korean Journal of Materials Research, 30(3):136-141, Materials Society of Korea, Seoul, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001)
Magnetic Anisotropy in Thin Layers of (Mn,Zn)Fe2O4 on SrTiO3 (001)

Denecke, R., Welke, M., Huth, P., Gräfe, J., Brachwitz, K., Lorenz, M., Grundmann, M., Ziese, M., Esquinazi, P. D., Goering, E., Schütz, G., Schindler, K., Chassé, A.

Physica Status Solidi (b), 257(7):1900627, 2020 (article)

Abstract
Herein, a ferrimagnetic manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) film with a thickness of 200 nm is prepared without a buffer layer on strontium titanate (001) (SrTiO3) using pulsed laser deposition. Its magnetic properties are investigated using superconducting quantum interference device (SQUID), X-ray absorption spectroscopy with subsequent X-ray magnetic circular dichroism (XMCD) and magneto-optic Kerr effect (MOKE). Hysteresis loops derived from SQUID exhibits bulk-like properties. This can further be confirmed by bulk-like XMCD spectra. In remanent magnetization, an in-plane magnetization with basically no out-of-plane component is found. The magnetic moments derived by the sum rule formalism from the XMCD data are in good agreement to the magnetization observed by SQUID and MOKE. XMCD as well as MOKE reveal an in-plane angular fourfold magnetic anisotropy with the easy direction along [110] for (Mn0.5Zn0.5)Fe2O4 on SrTiO3. The element-specific magnetic moments from XMCD show a stronger contribution of Fe to the anisotropy than of Mn and distinct contributions of the orbital moments.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
In situ x-ray diffraction and spectro-microscopic study of ALD protected copper films

Dogan, G., Sanli, U. T., Hahn, K., Müller, L., Gruhn, H., Silber, C., Schütz, G., Grévent, C., Keskinbora, K.

ACS Applied Materials and Interfaces, 12(29):33377-33385, American Chemical Society, Washington, DC, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
How to functionalise metal-organic frameworks to enable guest nanocluster embedment

King, J., Zhang, L., Doszczeczko, S., Sambalova, O., Luo, H., Rohman, F., Phillips, O., Borgschulte, A., Hirscher, M., Addicoat, M., Szilágyi, P. A.

{Journal of Materials Chemistry A}, 8(9):4889-4897, Royal Society of Chemistry, Cambridge, UK, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic and microstructural properties of anisotropic MnBi magnets compacted by spark plasma sintering

Chen, Y., Gregori, G., Rheingans, B., Huang, W., Kronmüller, H., Schütz, G., Goering, E.

{Journal of Alloys and Compounds}, 830, Elsevier B.V., Lausanne, Switzerland, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model

Wolf, Z., Jusufi, A., Vogt, D. M., Lauder, G. V.

Bioinspiration & Biomimetics, 15(4):046008, Inst. of Physics, London, 2020 (article)

bio

DOI [BibTex]

DOI [BibTex]


no image
Biocompatible magnetic micro- and nanodevices: Fabrication of FePt nanopropellers and cell transfection

Kadiri, V. M., Bussi, C., Holle, A. W., Son, K., Kwon, H., Schütz, G., Gutierrez, M. G., Fischer, P.

Advanced Materials, 32(25), Wiley-VCH, Weinheim, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Metal organic frameworks as tunable linear magnets

Son, K., Kim, R. K., Kim, S., Schütz, G., Choi, K. M., Oh, H.

Physica Status Solidi A, 217(12), Wiley-VCH, Weinheim, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Generation and characterization of focused helical x-ray beams

Loetgering, L., Baluktsian, M., Keskinbora, K., Horstmeyer, R., Wilhein, T., Schütz, G., Eikema, K. S. E., Witte, S.

Science Advances, 6(7), American Association for the Advancement of Science, 2020 (article)

mms

Generation and characterization of focused helical x-ray beams link (url) DOI [BibTex]

Generation and characterization of focused helical x-ray beams link (url) DOI [BibTex]


no image
Materials for hydrogen-based energy storage - past, recent progress and future outlook

Hirscher, M., Yartys, V. A., Baricco, M., Bellosta von Colbe, J., Blanchard, D., Bowman Jr., R. C., Broom, D. P., Buckley, C. E., Chang, F., Chen, P., Cho, Y. W., Crivello, J., Cuevas, F., David, W. I. F., de Jongh, P. E., Denys, R. V., Dornheim, M., Felderhoff, M., Filinchuk, Y., Froudakis, G. E., Grant, D. M., Gray, E. M., Hauback, B. C., He, T., Humphries, T. D., Jensen, T. R., Kim, S., Kojima, Y., Latroche, M., Li, H., Lotostskyy, M. V., Makepeace, J. W., M\oller, K. T., Naheed, L., Ngene, P., Noréus, D., Nyg\aard, M. M., Orimo, S., Paskevicius, M., Pasquini, L., Ravnsbaek, D. B., Sofianos, M. V., Udovic, T. J., Vegge, T., Walker, G. S., Webb, C. J., Weidenthaler, C., Zlotea, C.

{Journal of Alloys and Compounds}, 827, Elsevier B.V., Lausanne, Switzerland, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


{Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy}
Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy

Büttner, F., Mawass, M. A., Bauer, J., Rosenberg, E., Caretta, L., Avci, C. O., Gräfe, J., Finizio, S., Vaz, C. A. F., Novakovic, N., Weigand, M., Litzius, K., Förster, J., Träger, N., Groß, F., Suzuki, D., Huang, M., Bartell, J., Kronast, F., Raabe, J., Schütz, G., Ross, C. A., Beach, G. S. D.

{Physical Review Materials}, 4(1), American Physical Society, College Park, MD, 2020 (article)

Abstract
Ferrimagnetic iron garnets are promising materials for spintronics applications, characterized by ultralow damping and zero current shunting. It has recently been found that few nm-thick garnet films interfaced with a heavy metal can also exhibit sizable interfacial spin-orbit interactions, leading to the emergence, and efficient electrical control, of one-dimensional chiral domain walls. Two-dimensional bubbles, by contrast, have so far only been confirmed in micrometer-thick films. Here, we show by high resolution scanning transmission x-ray microscopy and photoemission electron microscopy that submicrometer bubbles can be nucleated and stabilized in ∼25-nm-thick thulium iron garnet films via short heat pulses generated by electric current in an adjacent Pt strip, or by ultrafast laser illumination. We also find that quasistatic processes do not lead to the formation of a bubble state, suggesting that the thermodynamic path to reaching that state requires transient dynamics. X-ray imaging reveals that the bubbles have Bloch-type walls with random chirality and topology, indicating negligible chiral interactions at the garnet film thickness studied here. The robustness of thermal nucleation and the feasibility demonstrated here to image garnet-based devices by x-rays both in transmission geometry and with sensitivity to the domain wall chirality are critical steps to enabling the study of small spin textures and dynamics in perpendicularly magnetized thin-film garnets.

mms

DOI [BibTex]

DOI [BibTex]


{Real-space imaging of confined magnetic skyrmion tubes}
Real-space imaging of confined magnetic skyrmion tubes

Birch, M. T., Cortés-Ortuño, D., Turnbull, L. A., Wilson, M. N., Groß, F., Träger, N., Laurenson, A., Bukin, N., Moody, S. H., Weigand, M., Schütz, G., Popescu, H., Fan, R., Steadman, P., Verezhak, J. A. T., Balakrishnan, G., Loudon, J. C., Twitchett-Harrison, A. C., Hovorka, O., Fangohr, H., Ogrin, F., Gräfe, J., Hatton, P. D.

Nature Communications, 11, pages: 1726, 2020 (article)

Abstract
Magnetic skyrmions are topologically nontrivial particles with a potential application as information elements in future spintronic device architectures. While they are commonly portrayed as two dimensional objects, in reality magnetic skyrmions are thought to exist as elongated, tube-like objects extending through the thickness of the host material. The study of this skyrmion tube state (SkT) is vital for furthering the understanding of skyrmion formation and dynamics for future applications. However, direct experimental imaging of skyrmion tubes has yet to be reported. Here, we demonstrate the real-space observation of skyrmion tubes in a lamella of FeGe using resonant magnetic x-ray imaging and comparative micromagnetic simulations, confirming their extended structure. The formation of these structures at the edge of the sample highlights the importance of confinement and edge effects in the stabilisation of the SkT state, opening the door to further investigation into this unexplored dimension of the skyrmion spin texture.

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Current-induced dynamical tilting of chiral domain walls in curved microwires

Finizio, S., Wintz, S., Mayr, S., Huxtable, A. J., Langer, M., Bailey, J., Burnell, G., Marrows, C. H., Raabe, J.

Applied Physics Letters, 116(18), American Institute of Physics, Melville, NY, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Highly effective hydrogen isotope separation through dihydrogen bond on Cu(I)-exchanged zeolites well above liquid nitrogen temperature

Xiong, R., Zhang, L., Li, P., Luo, W., Tang, T., Ao, B., Sang, G., Chen, C., Yan, X., Chen, J., Hirscher, M.

Chemical Engineering Journal, 391, Elsevier, Lausanne, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Ferrimagnetic skyrmions in topological insulator/ferrimagnet heterostructures

Wu, H., Groß, F., Dai, B. Q., Lujan, D., Razavi, S. A., Zhang, P., Liu, Y. X., Sobotkiewich, K., Förster, J., Weigand, M., Schütz, G., Li, X. Q., Gräfe, J., Wang, K. L.

Advanced Materials, 32(34), Wiley-VCH, Weinheim, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Room temperature ferromagnetism driven by Ca-doped BiFeO3 multiferroic functional material

Marzouk, M., Hashem, H. M., Soltan, S., Ramadan, A. A.

{Journal of Materials Science: Materials in Electronics}, 31(7):5599-5607, Springer, Norwell, MA, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]

2019


Soft-magnetic coatings as possible sensors for magnetic imaging of superconductors
Soft-magnetic coatings as possible sensors for magnetic imaging of superconductors

Ionescu, A., Simmendinger, J., Bihler, M., Miksch, C., Fischer, P., Soltan, S., Schütz, G., Albrecht, J.

Supercond. Sci. and Tech., 33, pages: 015002, IOP, December 2019 (article)

Abstract
Magnetic imaging of superconductors typically requires a soft-magnetic material placed on top of the superconductor to probe local magnetic fields. For reasonable results the influence of the magnet onto the superconductor has to be small. Thin YBCO films with soft-magnetic coatings are investigated using SQUID magnetometry. Detailed measurements of the magnetic moment as a function of temperature, magnetic field and time have been performed for different heterostructures. It is found that the modification of the superconducting transport in these heterostructures strongly depends on the magnetic and structural properties of the soft-magnetic material. This effect is especially pronounced for an inhomogeneous coating consisting of ferromagnetic nanoparticles.

pf mms

link (url) DOI [BibTex]

2019


link (url) DOI [BibTex]


Decoding subcategories of human bodies from both body- and face-responsive cortical regions
Decoding subcategories of human bodies from both body- and face-responsive cortical regions

Foster, C., Zhao, M., Romero, J., Black, M. J., Mohler, B. J., Bartels, A., Bülthoff, I.

NeuroImage, 202(15):116085, November 2019 (article)

Abstract
Our visual system can easily categorize objects (e.g. faces vs. bodies) and further differentiate them into subcategories (e.g. male vs. female). This ability is particularly important for objects of social significance, such as human faces and bodies. While many studies have demonstrated category selectivity to faces and bodies in the brain, how subcategories of faces and bodies are represented remains unclear. Here, we investigated how the brain encodes two prominent subcategories shared by both faces and bodies, sex and weight, and whether neural responses to these subcategories rely on low-level visual, high-level visual or semantic similarity. We recorded brain activity with fMRI while participants viewed faces and bodies that varied in sex, weight, and image size. The results showed that the sex of bodies can be decoded from both body- and face-responsive brain areas, with the former exhibiting more consistent size-invariant decoding than the latter. Body weight could also be decoded in face-responsive areas and in distributed body-responsive areas, and this decoding was also invariant to image size. The weight of faces could be decoded from the fusiform body area (FBA), and weight could be decoded across face and body stimuli in the extrastriate body area (EBA) and a distributed body-responsive area. The sex of well-controlled faces (e.g. excluding hairstyles) could not be decoded from face- or body-responsive regions. These results demonstrate that both face- and body-responsive brain regions encode information that can distinguish the sex and weight of bodies. Moreover, the neural patterns corresponding to sex and weight were invariant to image size and could sometimes generalize across face and body stimuli, suggesting that such subcategorical information is encoded with a high-level visual or semantic code.

ps

paper pdf DOI [BibTex]

paper pdf DOI [BibTex]


Active Perception based Formation Control for Multiple Aerial Vehicles
Active Perception based Formation Control for Multiple Aerial Vehicles

Tallamraju, R., Price, E., Ludwig, R., Karlapalem, K., Bülthoff, H. H., Black, M. J., Ahmad, A.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 4(4):4491-4498, IEEE, October 2019 (article)

Abstract
We present a novel robotic front-end for autonomous aerial motion-capture (mocap) in outdoor environments. In previous work, we presented an approach for cooperative detection and tracking (CDT) of a subject using multiple micro-aerial vehicles (MAVs). However, it did not ensure optimal view-point configurations of the MAVs to minimize the uncertainty in the person's cooperatively tracked 3D position estimate. In this article, we introduce an active approach for CDT. In contrast to cooperatively tracking only the 3D positions of the person, the MAVs can actively compute optimal local motion plans, resulting in optimal view-point configurations, which minimize the uncertainty in the tracked estimate. We achieve this by decoupling the goal of active tracking into a quadratic objective and non-convex constraints corresponding to angular configurations of the MAVs w.r.t. the person. We derive this decoupling using Gaussian observation model assumptions within the CDT algorithm. We preserve convexity in optimization by embedding all the non-convex constraints, including those for dynamic obstacle avoidance, as external control inputs in the MPC dynamics. Multiple real robot experiments and comparisons involving 3 MAVs in several challenging scenarios are presented.

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


no image
Decoding the Viewpoint and Identity of Faces and Bodies

Foster, C., Zhao, M., Bolkart, T., Black, M., Bartels, A., Bülthoff, I.

Journal of Vision, 19(10): 54c, pages: 54-55, Arvo Journals, September 2019 (article)

Abstract
(2019). . , 19(10): 25.13, 54-55. doi: Zitierlink: http://hdl.handle.net/21.11116/0000-0003-7493-4

ps

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Superior Magnetic Performance in FePt L1_0 Nanomaterials
Superior Magnetic Performance in FePt L1_0 Nanomaterials

Son, K., Ryu, G. H., Jeong, H., Fink, L., Merz, M., Nagel, P., Schuppler, S., Richter, G., Goering, E., Schütz, G.

Small, 15(1902353), July 2019 (article)

Abstract
The discovery of the high maximum energy product of 59 MGOe for NdFeB magnets is a breakthrough in the development of permanent magnets with a tremendous impact in many fields of technology. This value is still the world record, for 40 years. This work reports on a reliable and robust route to realize nearly perfectly ordered L1_0-phase FePt nanoparticles, leading to an unprecedented energy product of 80 MGOe at room temperature. Furthermore, with a 3 nm Au coverage, the magnetic polarization of these nanomagnets can be enhanced by 25% exceeding 1.8 T. This exceptional magnetization and anisotropy is confirmed by using multiple imaging and spectroscopic methods, which reveal highly consistent results. Due to the unprecedented huge energy product, this material can be envisaged as a new advanced basic magnetic component in modern micro and nanosized devices.

pf mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


 Perceptual Effects of Inconsistency in Human Animations
Perceptual Effects of Inconsistency in Human Animations

Kenny, S., Mahmood, N., Honda, C., Black, M. J., Troje, N. F.

ACM Trans. Appl. Percept., 16(1):2:1-2:18, Febuary 2019 (article)

Abstract
The individual shape of the human body, including the geometry of its articulated structure and the distribution of weight over that structure, influences the kinematics of a person’s movements. How sensitive is the visual system to inconsistencies between shape and motion introduced by retargeting motion from one person onto the shape of another? We used optical motion capture to record five pairs of male performers with large differences in body weight, while they pushed, lifted, and threw objects. From these data, we estimated both the kinematics of the actions as well as the performer’s individual body shape. To obtain consistent and inconsistent stimuli, we created animated avatars by combining the shape and motion estimates from either a single performer or from different performers. Using these stimuli we conducted three experiments in an immersive virtual reality environment. First, a group of participants detected which of two stimuli was inconsistent. Performance was very low, and results were only marginally significant. Next, a second group of participants rated perceived attractiveness, eeriness, and humanness of consistent and inconsistent stimuli, but these judgements of animation characteristics were not affected by consistency of the stimuli. Finally, a third group of participants rated properties of the objects rather than of the performers. Here, we found strong influences of shape-motion inconsistency on perceived weight and thrown distance of objects. This suggests that the visual system relies on its knowledge of shape and motion and that these components are assimilated into an altered perception of the action outcome. We propose that the visual system attempts to resist inconsistent interpretations of human animations. Actions involving object manipulations present an opportunity for the visual system to reinterpret the introduced inconsistencies as a change in the dynamics of an object rather than as an unexpected combination of body shape and body motion.

ps

publisher pdf DOI [BibTex]

publisher pdf DOI [BibTex]


no image
Extracting the dynamic magnetic contrast in time-resolved X-ray transmission microscopy

Schaffers, T., Feggeler, T., Pile, S., Meckenstock, R., Buchner, M., Spoddig, D., Ney, V., Farle, M., Wende, H., Wintz, S., Weigand, M., Ohldag, H., Ollefs, K, Ney, A.

{Nanomaterials}, 9(7), MDPI, Basel, Schweiz, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Generation of switchable singular beams with dynamic metasurfaces

Yu, P., Li, J., Li, X., Schütz, G., Hirscher, M., Zhang, S., Liu, N.

{ACS Nano}, 13(6):7100-7106, American Chemical Society, Washington, DC, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Piezo-electrical control of gyration dynamics of magnetic vortices

Filianina, M., Baldrati, L., Hajiri, T., Litzius, K., Foerster, M., Aballe, L., Kläui, M.

{Applied Physics Letters}, 115(6), American Institute of Physics, Melville, NY, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Barely porous organic cages for hydrogen isotrope separation

Liu, M., Zhang, L., Little, M. A., Kapil, V., Ceriotti, M., Yang, S., Ding, L., Holden, D. L., Balderas-Xicohténcatl, R., He, D., Clowes, R., Chong, S. Y., Schütz, G., Chen, L., Hirscher, M., Cooper, A. I.

{Science}, 366(6465):613-620, American Association for the Advancement of Science, Washington, D.C., 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetically induced anisotropy of flux penetration into strong-pinning superconductor/ferromagnet bilayers

Simmendinger, J., Hänisch, J., Bihler, M., Ionescu, A. M., Weigand, M., Sieger, M., Hühne, R., Rijckaert, H., van Driessche, I., Schütz, G., Albrecht, J.

{New Journal of Physics}, 21, IOP Publishing, Bristol, 2019 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
X-ray Optics Fabrication Using Unorthodox Approaches

Sanli, U., Baluktsian, M., Ceylan, H., Sitti, M., Weigand, M., Schütz, G., Keskinbora, K.

Bulletin of the American Physical Society, APS, 2019 (article)

mms pi

[BibTex]

[BibTex]


{Direct observation of coherent magnons with suboptical wavelengths in a single-crystalline ferrimagnetic insulator}
Direct observation of coherent magnons with suboptical wavelengths in a single-crystalline ferrimagnetic insulator

Förster, J., Gräfe, J., Bailey, J., Finizio, S., Träger, N., Groß, F., Mayr, S., Stoll, H., Dubs, C., Surzhenko, O., Liebing, N., Woltersdorf, G., Raabe, J., Weigand, M., Schütz, G., Wintz, S.

{Physical Review B}, 100(21), American Physical Society, Woodbury, NY, 2019 (article)

Abstract
Spin-wave dynamics were studied in an extended thin film of single-crystalline yttrium iron garnet using time-resolved scanning transmission x-ray microscopy. A combination of mechanical grinding and focused ion beam milling has been utilized to achieve a soft x-ray transparent thickness of the underlying bulk gadolinium gallium garnet substrate. Damon-Eshbach type spin waves down to about 100 nm wavelength have been directly imaged in real space for varying frequencies and external magnetic fields. The dispersion relation extracted from the experimental data agreed well with theoretical predictions. A significant influence of the ion milling process on the local magnetic properties was not detected.

mms

DOI [BibTex]

DOI [BibTex]


{Nanoscale detection of spin wave deflection angles in permalloy}
Nanoscale detection of spin wave deflection angles in permalloy

Gross, F., Träger, N., Förster, J., Weigand, M., Schütz, G., Gräfe, J.

{Applied Physics Letters}, 114(1), American Institute of Physics, Melville, NY, 2019 (article)

Abstract
Magnonics is a potential candidate for beyond CMOS and neuromorphic computing technologies with advanced phase encoded logic. However, nanoscale imaging of spin waves with full phase and magnetization amplitude information is a challenge. We show a generalized scanning transmission x-ray microscopy platform to get a complete understanding of spin waves, including the k-vector, phase, and absolute magnetization deflection angle. As an example, this is demonstrated using a 50 nm thin permalloy film where we find a maximum deflection angle of 1.5° and good agreement with the k-vector dispersion previously reported in the literature. With a spatial resolution approximately ten times better than any other methods for spin wave imaging, x-ray microscopy opens a vast range of possibilities for the observation of spin waves and various magnetic structures.

mms

DOI [BibTex]

DOI [BibTex]