Header logo is


2018


Customized Multi-Person Tracker
Customized Multi-Person Tracker

Ma, L., Tang, S., Black, M. J., Van Gool, L.

In Computer Vision – ACCV 2018, Springer International Publishing, Asian Conference on Computer Vision, December 2018 (inproceedings)

ps

PDF Project Page [BibTex]

2018


PDF Project Page [BibTex]


On the Integration of Optical Flow and Action Recognition
On the Integration of Optical Flow and Action Recognition

Sevilla-Lara, L., Liao, Y., Güney, F., Jampani, V., Geiger, A., Black, M. J.

In German Conference on Pattern Recognition (GCPR), LNCS 11269, pages: 281-297, Springer, Cham, October 2018 (inproceedings)

Abstract
Most of the top performing action recognition methods use optical flow as a "black box" input. Here we take a deeper look at the combination of flow and action recognition, and investigate why optical flow is helpful, what makes a flow method good for action recognition, and how we can make it better. In particular, we investigate the impact of different flow algorithms and input transformations to better understand how these affect a state-of-the-art action recognition method. Furthermore, we fine tune two neural-network flow methods end-to-end on the most widely used action recognition dataset (UCF101). Based on these experiments, we make the following five observations: 1) optical flow is useful for action recognition because it is invariant to appearance, 2) optical flow methods are optimized to minimize end-point-error (EPE), but the EPE of current methods is not well correlated with action recognition performance, 3) for the flow methods tested, accuracy at boundaries and at small displacements is most correlated with action recognition performance, 4) training optical flow to minimize classification error instead of minimizing EPE improves recognition performance, and 5) optical flow learned for the task of action recognition differs from traditional optical flow especially inside the human body and at the boundary of the body. These observations may encourage optical flow researchers to look beyond EPE as a goal and guide action recognition researchers to seek better motion cues, leading to a tighter integration of the optical flow and action recognition communities.

avg ps

arXiv DOI [BibTex]

arXiv DOI [BibTex]


Towards Robust Visual Odometry with a Multi-Camera System
Towards Robust Visual Odometry with a Multi-Camera System

Liu, P., Geppert, M., Heng, L., Sattler, T., Geiger, A., Pollefeys, M.

In International Conference on Intelligent Robots and Systems (IROS) 2018, International Conference on Intelligent Robots and Systems, October 2018 (inproceedings)

Abstract
We present a visual odometry (VO) algorithm for a multi-camera system and robust operation in challenging environments. Our algorithm consists of a pose tracker and a local mapper. The tracker estimates the current pose by minimizing photometric errors between the most recent keyframe and the current frame. The mapper initializes the depths of all sampled feature points using plane-sweeping stereo. To reduce pose drift, a sliding window optimizer is used to refine poses and structure jointly. Our formulation is flexible enough to support an arbitrary number of stereo cameras. We evaluate our algorithm thoroughly on five datasets. The datasets were captured in different conditions: daytime, night-time with near-infrared (NIR) illumination and night-time without NIR illumination. Experimental results show that a multi-camera setup makes the VO more robust to challenging environments, especially night-time conditions, in which a single stereo configuration fails easily due to the lack of features.

avg

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Temporal Interpolation as an Unsupervised Pretraining Task for Optical Flow Estimation
Temporal Interpolation as an Unsupervised Pretraining Task for Optical Flow Estimation

Wulff, J., Black, M. J.

In German Conference on Pattern Recognition (GCPR), LNCS 11269, pages: 567-582, Springer, Cham, October 2018 (inproceedings)

Abstract
The difficulty of annotating training data is a major obstacle to using CNNs for low-level tasks in video. Synthetic data often does not generalize to real videos, while unsupervised methods require heuristic n losses. Proxy tasks can overcome these issues, and start by training a network for a task for which annotation is easier or which can be trained unsupervised. The trained network is then fine-tuned for the original task using small amounts of ground truth data. Here, we investigate frame interpolation as a proxy task for optical flow. Using real movies, we train a CNN unsupervised for temporal interpolation. Such a network implicitly estimates motion, but cannot handle untextured regions. By fi ne-tuning on small amounts of ground truth flow, the network can learn to fill in homogeneous regions and compute full optical flow fi elds. Using this unsupervised pre-training, our network outperforms similar architectures that were trained supervised using synthetic optical flow.

ps

pdf arXiv DOI Project Page [BibTex]

pdf arXiv DOI Project Page [BibTex]


Human Motion Parsing by Hierarchical Dynamic Clustering
Human Motion Parsing by Hierarchical Dynamic Clustering

Zhang, Y., Tang, S., Sun, H., Neumann, H.

In Proceedings of the British Machine Vision Conference (BMVC), pages: 269, BMVA Press, 29th British Machine Vision Conference, September 2018 (inproceedings)

Abstract
Parsing continuous human motion into meaningful segments plays an essential role in various applications. In this work, we propose a hierarchical dynamic clustering framework to derive action clusters from a sequence of local features in an unsuper- vised bottom-up manner. We systematically investigate the modules in this framework and particularly propose diverse temporal pooling schemes, in order to realize accurate temporal action localization. We demonstrate our method on two motion parsing tasks: temporal action segmentation and abnormal behavior detection. The experimental results indicate that the proposed framework is significantly more effective than the other related state-of-the-art methods on several datasets.

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Generating {3D} Faces using Convolutional Mesh Autoencoders
Generating 3D Faces using Convolutional Mesh Autoencoders

Ranjan, A., Bolkart, T., Sanyal, S., Black, M. J.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol 11207, pages: 725-741, Springer, Cham, September 2018 (inproceedings)

Abstract
Learned 3D representations of human faces are useful for computer vision problems such as 3D face tracking and reconstruction from images, as well as graphics applications such as character generation and animation. Traditional models learn a latent representation of a face using linear subspaces or higher-order tensor generalizations. Due to this linearity, they can not capture extreme deformations and non-linear expressions. To address this, we introduce a versatile model that learns a non-linear representation of a face using spectral convolutions on a mesh surface. We introduce mesh sampling operations that enable a hierarchical mesh representation that captures non-linear variations in shape and expression at multiple scales within the model. In a variational setting, our model samples diverse realistic 3D faces from a multivariate Gaussian distribution. Our training data consists of 20,466 meshes of extreme expressions captured over 12 different subjects. Despite limited training data, our trained model outperforms state-of-the-art face models with 50% lower reconstruction error, while using 75% fewer parameters. We also show that, replacing the expression space of an existing state-of-the-art face model with our autoencoder, achieves a lower reconstruction error. Our data, model and code are available at http://coma.is.tue.mpg.de/.

ps

Code (tensorflow) Code (pytorch) Project Page paper supplementary DOI Project Page Project Page [BibTex]

Code (tensorflow) Code (pytorch) Project Page paper supplementary DOI Project Page Project Page [BibTex]


Learning Priors for Semantic 3D Reconstruction
Learning Priors for Semantic 3D Reconstruction

Cherabier, I., Schönberger, J., Oswald, M., Pollefeys, M., Geiger, A.

In Computer Vision – ECCV 2018, Springer International Publishing, Cham, September 2018 (inproceedings)

Abstract
We present a novel semantic 3D reconstruction framework which embeds variational regularization into a neural network. Our network performs a fixed number of unrolled multi-scale optimization iterations with shared interaction weights. In contrast to existing variational methods for semantic 3D reconstruction, our model is end-to-end trainable and captures more complex dependencies between the semantic labels and the 3D geometry. Compared to previous learning-based approaches to 3D reconstruction, we integrate powerful long-range dependencies using variational coarse-to-fine optimization. As a result, our network architecture requires only a moderate number of parameters while keeping a high level of expressiveness which enables learning from very little data. Experiments on real and synthetic datasets demonstrate that our network achieves higher accuracy compared to a purely variational approach while at the same time requiring two orders of magnitude less iterations to converge. Moreover, our approach handles ten times more semantic class labels using the same computational resources.

avg

pdf suppmat Project Page Video DOI Project Page [BibTex]

pdf suppmat Project Page Video DOI Project Page [BibTex]


Part-Aligned Bilinear Representations for Person Re-identification
Part-Aligned Bilinear Representations for Person Re-identification

Suh, Y., Wang, J., Tang, S., Mei, T., Lee, K. M.

In European Conference on Computer Vision (ECCV), 11218, pages: 418-437, Springer, Cham, September 2018 (inproceedings)

Abstract
Comparing the appearance of corresponding body parts is essential for person re-identification. However, body parts are frequently misaligned be- tween detected boxes, due to the detection errors and the pose/viewpoint changes. In this paper, we propose a network that learns a part-aligned representation for person re-identification. Our model consists of a two-stream network, which gen- erates appearance and body part feature maps respectively, and a bilinear-pooling layer that fuses two feature maps to an image descriptor. We show that it results in a compact descriptor, where the inner product between two image descriptors is equivalent to an aggregation of the local appearance similarities of the cor- responding body parts, and thereby significantly reduces the part misalignment problem. Our approach is advantageous over other pose-guided representations by learning part descriptors optimal for person re-identification. Training the net- work does not require any part annotation on the person re-identification dataset. Instead, we simply initialize the part sub-stream using a pre-trained sub-network of an existing pose estimation network and train the whole network to minimize the re-identification loss. We validate the effectiveness of our approach by demon- strating its superiority over the state-of-the-art methods on the standard bench- mark datasets including Market-1501, CUHK03, CUHK01 and DukeMTMC, and standard video dataset MARS.

ps

pdf supplementary DOI Project Page [BibTex]

pdf supplementary DOI Project Page [BibTex]


Learning Human Optical Flow
Learning Human Optical Flow

Ranjan, A., Romero, J., Black, M. J.

In 29th British Machine Vision Conference, September 2018 (inproceedings)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Given this, we devise an optical flow algorithm specifically for human motion and show that it is superior to generic flow methods. Designing a method by hand is impractical, so we develop a new training database of image sequences with ground truth optical flow. For this we use a 3D model of the human body and motion capture data to synthesize realistic flow fields. We then train a convolutional neural network to estimate human flow fields from pairs of images. Since many applications in human motion analysis depend on speed, and we anticipate mobile applications, we base our method on SpyNet with several modifications. We demonstrate that our trained network is more accurate than a wide range of top methods on held-out test data and that it generalizes well to real image sequences. When combined with a person detector/tracker, the approach provides a full solution to the problem of 2D human flow estimation. Both the code and the dataset are available for research.

ps

video code pdf link (url) Project Page Project Page [BibTex]

video code pdf link (url) Project Page Project Page [BibTex]


Neural Body Fitting: Unifying Deep Learning and Model-Based Human Pose and Shape Estimation
Neural Body Fitting: Unifying Deep Learning and Model-Based Human Pose and Shape Estimation

(Best Student Paper Award)

Omran, M., Lassner, C., Pons-Moll, G., Gehler, P. V., Schiele, B.

In 3DV, September 2018 (inproceedings)

Abstract
Direct prediction of 3D body pose and shape remains a challenge even for highly parameterized deep learning models. Mapping from the 2D image space to the prediction space is difficult: perspective ambiguities make the loss function noisy and training data is scarce. In this paper, we propose a novel approach (Neural Body Fitting (NBF)). It integrates a statistical body model within a CNN, leveraging reliable bottom-up semantic body part segmentation and robust top-down body model constraints. NBF is fully differentiable and can be trained using 2D and 3D annotations. In detailed experiments, we analyze how the components of our model affect performance, especially the use of part segmentations as an explicit intermediate representation, and present a robust, efficiently trainable framework for 3D human pose estimation from 2D images with competitive results on standard benchmarks. Code is available at https://github.com/mohomran/neural_body_fitting

ps

arXiv code Project Page [BibTex]


Unsupervised Learning of Multi-Frame Optical Flow with Occlusions
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

Janai, J., Güney, F., Ranjan, A., Black, M. J., Geiger, A.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol 11220, pages: 713-731, Springer, Cham, September 2018 (inproceedings)

avg ps

pdf suppmat Video Project Page DOI Project Page [BibTex]

pdf suppmat Video Project Page DOI Project Page [BibTex]


Learning an Infant Body Model from {RGB-D} Data for Accurate Full Body Motion Analysis
Learning an Infant Body Model from RGB-D Data for Accurate Full Body Motion Analysis

Hesse, N., Pujades, S., Romero, J., Black, M. J., Bodensteiner, C., Arens, M., Hofmann, U. G., Tacke, U., Hadders-Algra, M., Weinberger, R., Muller-Felber, W., Schroeder, A. S.

In Int. Conf. on Medical Image Computing and Computer Assisted Intervention (MICCAI), September 2018 (inproceedings)

Abstract
Infant motion analysis enables early detection of neurodevelopmental disorders like cerebral palsy (CP). Diagnosis, however, is challenging, requiring expert human judgement. An automated solution would be beneficial but requires the accurate capture of 3D full-body movements. To that end, we develop a non-intrusive, low-cost, lightweight acquisition system that captures the shape and motion of infants. Going beyond work on modeling adult body shape, we learn a 3D Skinned Multi-Infant Linear body model (SMIL) from noisy, low-quality, and incomplete RGB-D data. We demonstrate the capture of shape and motion with 37 infants in a clinical environment. Quantitative experiments show that SMIL faithfully represents the data and properly factorizes the shape and pose of the infants. With a case study based on general movement assessment (GMA), we demonstrate that SMIL captures enough information to allow medical assessment. SMIL provides a new tool and a step towards a fully automatic system for GMA.

ps

pdf Project page video extended arXiv version DOI Project Page [BibTex]

pdf Project page video extended arXiv version DOI Project Page [BibTex]


Deep Directional Statistics: Pose Estimation with Uncertainty Quantification
Deep Directional Statistics: Pose Estimation with Uncertainty Quantification

Prokudin, S., Gehler, P., Nowozin, S.

European Conference on Computer Vision (ECCV), September 2018 (conference)

Abstract
Modern deep learning systems successfully solve many perception tasks such as object pose estimation when the input image is of high quality. However, in challenging imaging conditions such as on low resolution images or when the image is corrupted by imaging artifacts, current systems degrade considerably in accuracy. While a loss in performance is unavoidable we would like our models to quantify their uncertainty in order to achieve robustness against images of varying quality. Probabilistic deep learning models combine the expressive power of deep learning with uncertainty quantification. In this paper, we propose a novel probabilistic deep learning model for the task of angular regression. Our model uses von Mises distributions to predict a distribution over object pose angle. Whereas a single von Mises distribution is making strong assumptions about the shape of the distribution, we extend the basic model to predict a mixture of von Mises distributions. We show how to learn a mixture model using a finite and infinite number of mixture components. Our model allow for likelihood-based training and efficient inference at test time. We demonstrate on a number of challenging pose estimation datasets that our model produces calibrated probability predictions and competitive or superior point estimates compared to the current state-of-the-art.

ps

code pdf [BibTex]

code pdf [BibTex]


SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images
SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images

Coors, B., Condurache, A. P., Geiger, A.

European Conference on Computer Vision (ECCV), September 2018 (conference)

Abstract
Omnidirectional cameras offer great benefits over classical cameras wherever a wide field of view is essential, such as in virtual reality applications or in autonomous robots. Unfortunately, standard convolutional neural networks are not well suited for this scenario as the natural projection surface is a sphere which cannot be unwrapped to a plane without introducing significant distortions, particularly in the polar regions. In this work, we present SphereNet, a novel deep learning framework which encodes invariance against such distortions explicitly into convolutional neural networks. Towards this goal, SphereNet adapts the sampling locations of the convolutional filters, effectively reversing distortions, and wraps the filters around the sphere. By building on regular convolutions, SphereNet enables the transfer of existing perspective convolutional neural network models to the omnidirectional case. We demonstrate the effectiveness of our method on the tasks of image classification and object detection, exploiting two newly created semi-synthetic and real-world omnidirectional datasets.

avg

pdf suppmat Project Page [BibTex]


Recovering Accurate {3D} Human Pose in The Wild Using {IMUs} and a Moving Camera
Recovering Accurate 3D Human Pose in The Wild Using IMUs and a Moving Camera

Marcard, T. V., Henschel, R., Black, M. J., Rosenhahn, B., Pons-Moll, G.

In European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol 11214, pages: 614-631, Springer, Cham, September 2018 (inproceedings)

Abstract
In this work, we propose a method that combines a single hand-held camera and a set of Inertial Measurement Units (IMUs) attached at the body limbs to estimate accurate 3D poses in the wild. This poses many new challenges: the moving camera, heading drift, cluttered background, occlusions and many people visible in the video. We associate 2D pose detections in each image to the corresponding IMU-equipped persons by solving a novel graph based optimization problem that forces 3D to 2D coherency within a frame and across long range frames. Given associations, we jointly optimize the pose of a statistical body model, the camera pose and heading drift using a continuous optimization framework. We validated our method on the TotalCapture dataset, which provides video and IMU synchronized with ground truth. We obtain an accuracy of 26mm, which makes it accurate enough to serve as a benchmark for image-based 3D pose estimation in the wild. Using our method, we recorded 3D Poses in the Wild (3DPW ), a new dataset consisting of more than 51; 000 frames with accurate 3D pose in challenging sequences, including walking in the city, going up-stairs, having co ffee or taking the bus. We make the reconstructed 3D poses, video, IMU and 3D models available for research purposes at http://virtualhumans.mpi-inf.mpg.de/3DPW.

ps

pdf SupMat data project DOI Project Page [BibTex]

pdf SupMat data project DOI Project Page [BibTex]


Decentralized {MPC} based Obstacle Avoidance for Multi-Robot Target Tracking Scenarios
Decentralized MPC based Obstacle Avoidance for Multi-Robot Target Tracking Scenarios

Tallamraju, R., Rajappa, S., Black, M. J., Karlapalem, K., Ahmad, A.

2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages: 1-8, IEEE, August 2018 (conference)

Abstract
In this work, we consider the problem of decentralized multi-robot target tracking and obstacle avoidance in dynamic environments. Each robot executes a local motion planning algorithm which is based on model predictive control (MPC). The planner is designed as a quadratic program, subject to constraints on robot dynamics and obstacle avoidance. Repulsive potential field functions are employed to avoid obstacles. The novelty of our approach lies in embedding these non-linear potential field functions as constraints within a convex optimization framework. Our method convexifies nonconvex constraints and dependencies, by replacing them as pre-computed external input forces in robot dynamics. The proposed algorithm additionally incorporates different methods to avoid field local minima problems associated with using potential field functions in planning. The motion planner does not enforce predefined trajectories or any formation geometry on the robots and is a comprehensive solution for cooperative obstacle avoidance in the context of multi-robot target tracking. We perform simulation studies for different scenarios to showcase the convergence and efficacy of the proposed algorithm.

ps

Published Version link (url) DOI [BibTex]

Published Version link (url) DOI [BibTex]


no image
Assessment Of Atypical Motor Development In Infants Through Toy-Stimulated Play And Center Of Pressure Analysis

Zhao, S., Mohan, M., Torres, W. O., Bogen, D. K., Shofer, F. S., Prosser, L., Loeb, H., Johnson, M. J.

In Proceedings of the Annual Rehabilitation Engineering and Assistive Technology Society of North America (RESNA) Conference, Arlington, USA, July 2018 (inproceedings)

Abstract
There is a need to identify measures and create systems to assess motor development at an early stage. Center of Pressure (CoP) is a quantifiable metric that has been used to investigate postural control in healthy young children [6], children with CP [7], and infants just beginning to sit [8]. It was found that infants born prematurely exhibit different patterns of CoP movement than infants born full-term when assessing development impairments relating to postural control [9]. Preterm infants exhibited greater CoP excursions but had greater variability in their movements than fullterm infants. Our solution, the Play And Neuro-Development Assessment (PANDA) Gym, is a sensorized environment that aims to provide early diagnosis of neuromotor disorder in infants and improve current screening processes by providing quantitative measures rather than subjective ones, and promoting natural play with the stimulus of toys. Previous studies have documented stages in motor development in infants [10, 11], and developmental delays could become more apparent through toy interactions. This study examines the sensitivity of the pressure-sensitive mat subsystem to detect differences in CoP movement patterns for preterm and fullterm infants less than 6 months of age, with varying risk levels. This study aims to distinguish between typical and atypical motor development through assessment of the CoP data of infants in a natural play environment, in conditions where movement may be further stimulated with the presence of a toy.

hi

link (url) [BibTex]

link (url) [BibTex]


Robust Dense Mapping for Large-Scale Dynamic Environments
Robust Dense Mapping for Large-Scale Dynamic Environments

Barsan, I. A., Liu, P., Pollefeys, M., Geiger, A.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

Abstract
We present a stereo-based dense mapping algorithm for large-scale dynamic urban environments. In contrast to other existing methods, we simultaneously reconstruct the static background, the moving objects, and the potentially moving but currently stationary objects separately, which is desirable for high-level mobile robotic tasks such as path planning in crowded environments. We use both instance-aware semantic segmentation and sparse scene flow to classify objects as either background, moving, or potentially moving, thereby ensuring that the system is able to model objects with the potential to transition from static to dynamic, such as parked cars. Given camera poses estimated from visual odometry, both the background and the (potentially) moving objects are reconstructed separately by fusing the depth maps computed from the stereo input. In addition to visual odometry, sparse scene flow is also used to estimate the 3D motions of the detected moving objects, in order to reconstruct them accurately. A map pruning technique is further developed to improve reconstruction accuracy and reduce memory consumption, leading to increased scalability. We evaluate our system thoroughly on the well-known KITTI dataset. Our system is capable of running on a PC at approximately 2.5Hz, with the primary bottleneck being the instance-aware semantic segmentation, which is a limitation we hope to address in future work.

avg

pdf Video Project Page Project Page [BibTex]

pdf Video Project Page Project Page [BibTex]


RayNet: Learning Volumetric 3D Reconstruction with Ray Potentials
RayNet: Learning Volumetric 3D Reconstruction with Ray Potentials

Paschalidou, D., Ulusoy, A. O., Schmitt, C., Gool, L., Geiger, A.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
In this paper, we consider the problem of reconstructing a dense 3D model using images captured from different views. Recent methods based on convolutional neural networks (CNN) allow learning the entire task from data. However, they do not incorporate the physics of image formation such as perspective geometry and occlusion. Instead, classical approaches based on Markov Random Fields (MRF) with ray-potentials explicitly model these physical processes, but they cannot cope with large surface appearance variations across different viewpoints. In this paper, we propose RayNet, which combines the strengths of both frameworks. RayNet integrates a CNN that learns view-invariant feature representations with an MRF that explicitly encodes the physics of perspective projection and occlusion. We train RayNet end-to-end using empirical risk minimization. We thoroughly evaluate our approach on challenging real-world datasets and demonstrate its benefits over a piece-wise trained baseline, hand-crafted models as well as other learning-based approaches.

avg

pdf suppmat Video Project Page code Poster Project Page [BibTex]

pdf suppmat Video Project Page code Poster Project Page [BibTex]


End-to-end Recovery of Human Shape and Pose
End-to-end Recovery of Human Shape and Pose

Kanazawa, A., Black, M. J., Jacobs, D. W., Malik, J.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 7122-7131, IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
We describe Human Mesh Recovery (HMR), an end-to-end framework for reconstructing a full 3D mesh of a human body from a single RGB image. In contrast to most current methods that compute 2D or 3D joint locations, we produce a richer and more useful mesh representation that is parameterized by shape and 3D joint angles. The main objective is to minimize the reprojection loss of keypoints, which allows our model to be trained using in-the-wild images that only have ground truth 2D annotations. However, the reprojection loss alone is highly underconstrained. In this work we address this problem by introducing an adversary trained to tell whether human body shape and pose parameters are real or not using a large database of 3D human meshes. We show that HMR can be trained with and without using any paired 2D-to-3D supervision. We do not rely on intermediate 2D keypoint detections and infer 3D pose and shape parameters directly from image pixels. Our model runs in real-time given a bounding box containing the person. We demonstrate our approach on various images in-the-wild and out-perform previous optimization-based methods that output 3D meshes and show competitive results on tasks such as 3D joint location estimation and part segmentation.

ps

pdf code project video Project Page [BibTex]

pdf code project video Project Page [BibTex]


Deep Marching Cubes: Learning Explicit Surface Representations
Deep Marching Cubes: Learning Explicit Surface Representations

Liao, Y., Donne, S., Geiger, A.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
Existing learning based solutions to 3D surface prediction cannot be trained end-to-end as they operate on intermediate representations (eg, TSDF) from which 3D surface meshes must be extracted in a post-processing step (eg, via the marching cubes algorithm). In this paper, we investigate the problem of end-to-end 3D surface prediction. We first demonstrate that the marching cubes algorithm is not differentiable and propose an alternative differentiable formulation which we insert as a final layer into a 3D convolutional neural network. We further propose a set of loss functions which allow for training our model with sparse point supervision. Our experiments demonstrate that the model allows for predicting sub-voxel accurate 3D shapes of arbitrary topology. Additionally, it learns to complete shapes and to separate an object's inside from its outside even in the presence of sparse and incomplete ground truth. We investigate the benefits of our approach on the task of inferring shapes from 3D point clouds. Our model is flexible and can be combined with a variety of shape encoder and shape inference techniques.

avg

pdf suppmat Video Project Page Poster Project Page [BibTex]

pdf suppmat Video Project Page Poster Project Page [BibTex]


Semantic Visual Localization
Semantic Visual Localization

Schönberger, J., Pollefeys, M., Geiger, A., Sattler, T.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
Robust visual localization under a wide range of viewing conditions is a fundamental problem in computer vision. Handling the difficult cases of this problem is not only very challenging but also of high practical relevance, eg, in the context of life-long localization for augmented reality or autonomous robots. In this paper, we propose a novel approach based on a joint 3D geometric and semantic understanding of the world, enabling it to succeed under conditions where previous approaches failed. Our method leverages a novel generative model for descriptor learning, trained on semantic scene completion as an auxiliary task. The resulting 3D descriptors are robust to missing observations by encoding high-level 3D geometric and semantic information. Experiments on several challenging large-scale localization datasets demonstrate reliable localization under extreme viewpoint, illumination, and geometry changes.

avg

pdf suppmat Poster Project Page [BibTex]

pdf suppmat Poster Project Page [BibTex]


Which Training Methods for GANs do actually Converge?
Which Training Methods for GANs do actually Converge?

Mescheder, L., Geiger, A., Nowozin, S.

International Conference on Machine learning (ICML), 2018 (conference)

Abstract
Recent work has shown local convergence of GAN training for absolutely continuous data and generator distributions. In this paper, we show that the requirement of absolute continuity is necessary: we describe a simple yet prototypical counterexample showing that in the more realistic case of distributions that are not absolutely continuous, unregularized GAN training is not always convergent. Furthermore, we discuss regularization strategies that were recently proposed to stabilize GAN training. Our analysis shows that GAN training with instance noise or zero-centered gradient penalties converges. On the other hand, we show that Wasserstein-GANs and WGAN-GP with a finite number of discriminator updates per generator update do not always converge to the equilibrium point. We discuss these results, leading us to a new explanation for the stability problems of GAN training. Based on our analysis, we extend our convergence results to more general GANs and prove local convergence for simplified gradient penalties even if the generator and data distributions lie on lower dimensional manifolds. We find these penalties to work well in practice and use them to learn high-resolution generative image models for a variety of datasets with little hyperparameter tuning.

avg

code video paper supplement slides poster Project Page [BibTex]


Learning 3D Shape Completion from Laser Scan Data with Weak Supervision
Learning 3D Shape Completion from Laser Scan Data with Weak Supervision

Stutz, D., Geiger, A.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
3D shape completion from partial point clouds is a fundamental problem in computer vision and computer graphics. Recent approaches can be characterized as either data-driven or learning-based. Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations. Learning-based approaches, in contrast, avoid the expensive optimization step and instead directly predict the complete shape from the incomplete observations using deep neural networks. However, full supervision is required which is often not available in practice. In this work, we propose a weakly-supervised learning-based approach to 3D shape completion which neither requires slow optimization nor direct supervision. While we also learn a shape prior on synthetic data, we amortize, ie, learn, maximum likelihood fitting using deep neural networks resulting in efficient shape completion without sacrificing accuracy. Tackling 3D shape completion of cars on ShapeNet and KITTI, we demonstrate that the proposed amortized maximum likelihood approach is able to compete with a fully supervised baseline and a state-of-the-art data-driven approach while being significantly faster. On ModelNet, we additionally show that the approach is able to generalize to other object categories as well.

avg

pdf suppmat Project Page Poster Project Page [BibTex]

pdf suppmat Project Page Poster Project Page [BibTex]


Learning Transformation Invariant Representations with Weak Supervision
Learning Transformation Invariant Representations with Weak Supervision

Coors, B., Condurache, A., Mertins, A., Geiger, A.

In International Conference on Computer Vision Theory and Applications, International Conference on Computer Vision Theory and Applications, 2018 (inproceedings)

Abstract
Deep convolutional neural networks are the current state-of-the-art solution to many computer vision tasks. However, their ability to handle large global and local image transformations is limited. Consequently, extensive data augmentation is often utilized to incorporate prior knowledge about desired invariances to geometric transformations such as rotations or scale changes. In this work, we combine data augmentation with an unsupervised loss which enforces similarity between the predictions of augmented copies of an input sample. Our loss acts as an effective regularizer which facilitates the learning of transformation invariant representations. We investigate the effectiveness of the proposed similarity loss on rotated MNIST and the German Traffic Sign Recognition Benchmark (GTSRB) in the context of different classification models including ladder networks. Our experiments demonstrate improvements with respect to the standard data augmentation approach for supervised and semi-supervised learning tasks, in particular in the presence of little annotated data. In addition, we analyze the performance of the proposed approach with respect to its hyperparameters, including the strength of the regularization as well as the layer where representation similarity is enforced.

avg

pdf [BibTex]

pdf [BibTex]


Lions and Tigers and Bears: Capturing Non-Rigid, {3D}, Articulated Shape from Images
Lions and Tigers and Bears: Capturing Non-Rigid, 3D, Articulated Shape from Images

Zuffi, S., Kanazawa, A., Black, M. J.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 3955-3963, IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
Animals are widespread in nature and the analysis of their shape and motion is important in many fields and industries. Modeling 3D animal shape, however, is difficult because the 3D scanning methods used to capture human shape are not applicable to wild animals or natural settings. Consequently, we propose a method to capture the detailed 3D shape of animals from images alone. The articulated and deformable nature of animals makes this problem extremely challenging, particularly in unconstrained environments with moving and uncalibrated cameras. To make this possible, we use a strong prior model of articulated animal shape that we fit to the image data. We then deform the animal shape in a canonical reference pose such that it matches image evidence when articulated and projected into multiple images. Our method extracts significantly more 3D shape detail than previous methods and is able to model new species, including the shape of an extinct animal, using only a few video frames. Additionally, the projected 3D shapes are accurate enough to facilitate the extraction of a realistic texture map from multiple frames.

ps

pdf code/data 3D models DOI Project Page [BibTex]

pdf code/data 3D models DOI Project Page [BibTex]

2013


Strong Appearance and Expressive Spatial Models for Human Pose Estimation
Strong Appearance and Expressive Spatial Models for Human Pose Estimation

Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B.

In International Conference on Computer Vision (ICCV), pages: 3487 - 3494 , IEEE, Computer Vision (ICCV), IEEE International Conference on , December 2013 (inproceedings)

Abstract
Typical approaches to articulated pose estimation combine spatial modelling of the human body with appearance modelling of body parts. This paper aims to push the state-of-the-art in articulated pose estimation in two ways. First we explore various types of appearance representations aiming to substantially improve the body part hypotheses. And second, we draw on and combine several recently proposed powerful ideas such as more flexible spatial models as well as image-conditioned spatial models. In a series of experiments we draw several important conclusions: (1) we show that the proposed appearance representations are complementary; (2) we demonstrate that even a basic tree-structure spatial human body model achieves state-of-the-art performance when augmented with the proper appearance representation; and (3) we show that the combination of the best performing appearance model with a flexible image-conditioned spatial model achieves the best result, significantly improving over the state of the art, on the "Leeds Sports Poses'' and "Parse'' benchmarks.

ps

pdf DOI Project Page [BibTex]

2013


pdf DOI Project Page [BibTex]


Understanding High-Level Semantics by Modeling Traffic Patterns
Understanding High-Level Semantics by Modeling Traffic Patterns

Zhang, H., Geiger, A., Urtasun, R.

In International Conference on Computer Vision, pages: 3056-3063, Sydney, Australia, December 2013 (inproceedings)

Abstract
In this paper, we are interested in understanding the semantics of outdoor scenes in the context of autonomous driving. Towards this goal, we propose a generative model of 3D urban scenes which is able to reason not only about the geometry and objects present in the scene, but also about the high-level semantics in the form of traffic patterns. We found that a small number of patterns is sufficient to model the vast majority of traffic scenes and show how these patterns can be learned. As evidenced by our experiments, this high-level reasoning significantly improves the overall scene estimation as well as the vehicle-to-lane association when compared to state-of-the-art approaches. All data and code will be made available upon publication.

avg ps

pdf [BibTex]

pdf [BibTex]


A Non-parametric {Bayesian} Network Prior of Human Pose
A Non-parametric Bayesian Network Prior of Human Pose

Lehrmann, A. M., Gehler, P., Nowozin, S.

In Proceedings IEEE Conf. on Computer Vision (ICCV), pages: 1281-1288, IEEE International Conference on Computer Vision, December 2013 (inproceedings)

Abstract
Having a sensible prior of human pose is a vital ingredient for many computer vision applications, including tracking and pose estimation. While the application of global non-parametric approaches and parametric models has led to some success, finding the right balance in terms of flexibility and tractability, as well as estimating model parameters from data has turned out to be challenging. In this work, we introduce a sparse Bayesian network model of human pose that is non-parametric with respect to the estimation of both its graph structure and its local distributions. We describe an efficient sampling scheme for our model and show its tractability for the computation of exact log-likelihoods. We empirically validate our approach on the Human 3.6M dataset and demonstrate superior performance to global models and parametric networks. We further illustrate our model's ability to represent and compose poses not present in the training set (compositionality) and describe a speed-accuracy trade-off that allows realtime scoring of poses.

ps

Project page pdf DOI Project Page [BibTex]

Project page pdf DOI Project Page [BibTex]


Towards understanding action recognition
Towards understanding action recognition

Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M. J.

In IEEE International Conference on Computer Vision (ICCV), pages: 3192-3199, IEEE, Sydney, Australia, December 2013 (inproceedings)

Abstract
Although action recognition in videos is widely studied, current methods often fail on real-world datasets. Many recent approaches improve accuracy and robustness to cope with challenging video sequences, but it is often unclear what affects the results most. This paper attempts to provide insights based on a systematic performance evaluation using thoroughly-annotated data of human actions. We annotate human Joints for the HMDB dataset (J-HMDB). This annotation can be used to derive ground truth optical flow and segmentation. We evaluate current methods using this dataset and systematically replace the output of various algorithms with ground truth. This enables us to discover what is important – for example, should we work on improving flow algorithms, estimating human bounding boxes, or enabling pose estimation? In summary, we find that highlevel pose features greatly outperform low/mid level features; in particular, pose over time is critical, but current pose estimation algorithms are not yet reliable enough to provide this information. We also find that the accuracy of a top-performing action recognition framework can be greatly increased by refining the underlying low/mid level features; this suggests it is important to improve optical flow and human detection algorithms. Our analysis and JHMDB dataset should facilitate a deeper understanding of action recognition algorithms.

ps

Website Errata Poster Paper Slides DOI Project Page Project Page Project Page [BibTex]

Website Errata Poster Paper Slides DOI Project Page Project Page Project Page [BibTex]


Mixing Decoded Cursor Velocity and Position from an Offline Kalman Filter Improves Cursor Control in People with Tetraplegia
Mixing Decoded Cursor Velocity and Position from an Offline Kalman Filter Improves Cursor Control in People with Tetraplegia

Homer, M., Harrison, M., Black, M. J., Perge, J., Cash, S., Friehs, G., Hochberg, L.

In 6th International IEEE EMBS Conference on Neural Engineering, pages: 715-718, San Diego, November 2013 (inproceedings)

Abstract
Kalman filtering is a common method to decode neural signals from the motor cortex. In clinical research investigating the use of intracortical brain computer interfaces (iBCIs), the technique enabled people with tetraplegia to control assistive devices such as a computer or robotic arm directly from their neural activity. For reaching movements, the Kalman filter typically estimates the instantaneous endpoint velocity of the control device. Here, we analyzed attempted arm/hand movements by people with tetraplegia to control a cursor on a computer screen to reach several circular targets. A standard velocity Kalman filter is enhanced to additionally decode for the cursor’s position. We then mix decoded velocity and position to generate cursor movement commands. We analyzed data, offline, from two participants across six sessions. Root mean squared error between the actual and estimated cursor trajectory improved by 12.2 ±10.5% (pairwise t-test, p<0.05) as compared to a standard velocity Kalman filter. The findings suggest that simultaneously decoding for intended velocity and position and using them both to generate movement commands can improve the performance of iBCIs.

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
Governance of Humanoid Robot Using Master Exoskeleton

Kumra, S., Mohan, M., Gupta, S., Vaswani, H.

In Proceedings of the IEEE International Symposium on Robotics (ISR), Seoul, South Korea, October 2013 (inproceedings)

Abstract
Dexto:Eka: is an adult-size humanoid robot being developed with the aim of achieving tele-presence. The paper sheds light on the control of this robot using a Master Exoskeleton which comprises of an Exo-Frame, a Control Column and a Graphical User Interface. It further illuminates the processes and algorithms that have been utilized to make an efficient system that would effectively emulate a tele-operator.

hi

DOI [BibTex]

DOI [BibTex]


no image
Design and development part 2 of Dexto:Eka: - The humanoid robot

Kumra, S., Mohan, M., Gupta, S., Vaswani, H.

In Proceedings of the International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, August 2013 (inproceedings)

Abstract
Through this paper, we elucidate the second phase of the design and development of the tele-operated humanoid robot Dexto:Eka:. Phase one comprised of the development of a 6 DoF left anthropomorphic arm and left exo-frame. Here, we illustrate the development of the right arm, right exo-frame, torso, backbone, human machine interface and omni-directional locomotion system. Dexto:Eka: will be able to communicate with a remote user through Wi-Fi. An exo-frame capacitates it to emulate human arms and its locomotion is controlled by joystick. A Graphical User Interface monitors and helps in controlling the system.

hi

DOI [BibTex]

DOI [BibTex]


Poselet conditioned pictorial structures
Poselet conditioned pictorial structures

Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages: 588 - 595, IEEE, Portland, OR, Conference on Computer Vision and Pattern Recognition (CVRP), June 2013 (inproceedings)

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Occlusion Patterns for Object Class Detection
Occlusion Patterns for Object Class Detection

Pepik, B., Stark, M., Gehler, P., Schiele, B.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, OR, June 2013 (inproceedings)

Abstract
Despite the success of recent object class recognition systems, the long-standing problem of partial occlusion re- mains a major challenge, and a principled solution is yet to be found. In this paper we leave the beaten path of meth- ods that treat occlusion as just another source of noise – instead, we include the occluder itself into the modelling, by mining distinctive, reoccurring occlusion patterns from annotated training data. These patterns are then used as training data for dedicated detectors of varying sophistica- tion. In particular, we evaluate and compare models that range from standard object class detectors to hierarchical, part-based representations of occluder/occludee pairs. In an extensive evaluation we derive insights that can aid fur- ther developments in tackling the occlusion challenge.

ps

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization
Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization

(CVPR13 Best Paper Runner-Up)

Brubaker, M. A., Geiger, A., Urtasun, R.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2013), pages: 3057-3064, IEEE, Portland, OR, June 2013 (inproceedings)

Abstract
In this paper we propose an affordable solution to self- localization, which utilizes visual odometry and road maps as the only inputs. To this end, we present a probabilis- tic model as well as an efficient approximate inference al- gorithm, which is able to utilize distributed computation to meet the real-time requirements of autonomous systems. Because of the probabilistic nature of the model we are able to cope with uncertainty due to noisy visual odometry and inherent ambiguities in the map ( e.g ., in a Manhattan world). By exploiting freely available, community devel- oped maps and visual odometry measurements, we are able to localize a vehicle up to 3m after only a few seconds of driving on maps which contain more than 2,150km of driv- able roads.

avg ps

pdf supplementary project page [BibTex]

pdf supplementary project page [BibTex]


Human Pose Estimation using Body Parts Dependent Joint Regressors
Human Pose Estimation using Body Parts Dependent Joint Regressors

Dantone, M., Gall, J., Leistner, C., van Gool, L.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3041-3048, IEEE, Portland, OR, USA, June 2013 (inproceedings)

Abstract
In this work, we address the problem of estimating 2d human pose from still images. Recent methods that rely on discriminatively trained deformable parts organized in a tree model have shown to be very successful in solving this task. Within such a pictorial structure framework, we address the problem of obtaining good part templates by proposing novel, non-linear joint regressors. In particular, we employ two-layered random forests as joint regressors. The first layer acts as a discriminative, independent body part classifier. The second layer takes the estimated class distributions of the first one into account and is thereby able to predict joint locations by modeling the interdependence and co-occurrence of the parts. This results in a pose estimation framework that takes dependencies between body parts already for joint localization into account and is thus able to circumvent typical ambiguities of tree structures, such as for legs and arms. In the experiments, we demonstrate that our body parts dependent joint regressors achieve a higher joint localization accuracy than tree-based state-of-the-art methods.

ps

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


A fully-connected layered model of foreground and background flow
A fully-connected layered model of foreground and background flow

Sun, D., Wulff, J., Sudderth, E., Pfister, H., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, (CVPR 2013), pages: 2451-2458, Portland, OR, June 2013 (inproceedings)

Abstract
Layered models allow scene segmentation and motion estimation to be formulated together and to inform one another. Traditional layered motion methods, however, employ fairly weak models of scene structure, relying on locally connected Ising/Potts models which have limited ability to capture long-range correlations in natural scenes. To address this, we formulate a fully-connected layered model that enables global reasoning about the complicated segmentations of real objects. Optimization with fully-connected graphical models is challenging, and our inference algorithm leverages recent work on efficient mean field updates for fully-connected conditional random fields. These methods can be implemented efficiently using high-dimensional Gaussian filtering. We combine these ideas with a layered flow model, and find that the long-range connections greatly improve segmentation into figure-ground layers when compared with locally connected MRF models. Experiments on several benchmark datasets show that the method can recover fine structures and large occlusion regions, with good flow accuracy and much lower computational cost than previous locally-connected layered models.

ps

pdf Supplemental Material Project Page Project Page [BibTex]

pdf Supplemental Material Project Page Project Page [BibTex]


Estimating Human Pose with Flowing Puppets
Estimating Human Pose with Flowing Puppets

Zuffi, S., Romero, J., Schmid, C., Black, M. J.

In IEEE International Conference on Computer Vision (ICCV), pages: 3312-3319, 2013 (inproceedings)

Abstract
We address the problem of upper-body human pose estimation in uncontrolled monocular video sequences, without manual initialization. Most current methods focus on isolated video frames and often fail to correctly localize arms and hands. Inferring pose over a video sequence is advantageous because poses of people in adjacent frames exhibit properties of smooth variation due to the nature of human and camera motion. To exploit this, previous methods have used prior knowledge about distinctive actions or generic temporal priors combined with static image likelihoods to track people in motion. Here we take a different approach based on a simple observation: Information about how a person moves from frame to frame is present in the optical flow field. We develop an approach for tracking articulated motions that "links" articulated shape models of people in adjacent frames trough the dense optical flow. Key to this approach is a 2D shape model of the body that we use to compute how the body moves over time. The resulting "flowing puppets" provide a way of integrating image evidence across frames to improve pose inference. We apply our method on a challenging dataset of TV video sequences and show state-of-the-art performance.

ps

pdf code data DOI Project Page Project Page Project Page [BibTex]

pdf code data DOI Project Page Project Page Project Page [BibTex]


A Comparison of Directional Distances for Hand Pose Estimation
A Comparison of Directional Distances for Hand Pose Estimation

Tzionas, D., Gall, J.

In German Conference on Pattern Recognition (GCPR), 8142, pages: 131-141, Lecture Notes in Computer Science, (Editors: Weickert, Joachim and Hein, Matthias and Schiele, Bernt), Springer, 2013 (inproceedings)

Abstract
Benchmarking methods for 3d hand tracking is still an open problem due to the difficulty of acquiring ground truth data. We introduce a new dataset and benchmarking protocol that is insensitive to the accumulative error of other protocols. To this end, we create testing frame pairs of increasing difficulty and measure the pose estimation error separately for each of them. This approach gives new insights and allows to accurately study the performance of each feature or method without employing a full tracking pipeline. Following this protocol, we evaluate various directional distances in the context of silhouette-based 3d hand tracking, expressed as special cases of a generalized Chamfer distance form. An appropriate parameter setup is proposed for each of them, and a comparative study reveals the best performing method in this context.

ps

pdf Supplementary Project Page link (url) DOI Project Page [BibTex]

pdf Supplementary Project Page link (url) DOI Project Page [BibTex]


A Generic Deformation Model for Dense Non-Rigid Surface Registration: a Higher-Order MRF-based Approach
A Generic Deformation Model for Dense Non-Rigid Surface Registration: a Higher-Order MRF-based Approach

Zeng, Y., Wang, C., Gu, X., Samaras, D., Paragios, N.

In IEEE International Conference on Computer Vision (ICCV), pages: 3360~3367, 2013 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]