Header logo is


2011


no image
Please \soutdo not touch the robot

Romano, J. M., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), San Francisco, California, sep 2011 (misc)

hi

[BibTex]

2011


[BibTex]


no image
Body-Grounded Tactile Actuators for Playback of Human Physical Contact

Stanley, A. A., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE World Haptics Conference, Istanbul, Turkey, June 2011 (misc)

hi

[BibTex]

[BibTex]

2008


no image
The Touch Thimble

Kuchenbecker, K. J., Ferguson, D., Kutzer, M., Moses, M., Okamura, A. M.

Hands-on demonstration presented at IEEE Haptics Symposium, Reno, Nevada, USA, March 2008 (misc)

hi

[BibTex]

2008


[BibTex]

2005


no image
Adhesive microstructure and method of forming same

Fearing, R. S., Sitti, M.

March 2005, US Patent 6,872,439 (misc)

pi

[BibTex]

2005


[BibTex]


no image
Event-Based Haptic Feedback

Kuchenbecker, K. J., Fiene, J. P., Niemeyer, G.

Hands-on demonstration at IEEE World Haptics Conference, Pisa, Italy, March 2005 (misc)

hi

[BibTex]

[BibTex]

2004


no image
Statistische Lerntheorie und Empirische Inferenz

Schölkopf, B.

Jahrbuch der Max-Planck-Gesellschaft, 2004, pages: 377-382, 2004 (misc)

Abstract
Statistical learning theory studies the process of inferring regularities from empirical data. The fundamental problem is what is called generalization: how it is possible to infer a law which will be valid for an infinite number of future observations, given only a finite amount of data? This problem hinges upon fundamental issues of statistics and science in general, such as the problems of complexity of explanations, a priori knowledge, and representation of data.

ei

PDF Web [BibTex]

2004


PDF Web [BibTex]


no image
Nanoscale Materials for Energy Storage
{Materials Science \& Engineering B}, 108, pages: 292, Elsevier, 2004 (misc)

mms

[BibTex]

[BibTex]