Header logo is


2018


no image
Poster Abstract: Toward Fast Closed-loop Control over Multi-hop Low-power Wireless Networks

Mager, F., Baumann, D., Trimpe, S., Zimmerling, M.

Proceedings of the 17th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 158-159, Porto, Portugal, April 2018 (poster)

ics

DOI Project Page [BibTex]

2018


DOI Project Page [BibTex]


no image
Representation of sensory uncertainty in macaque visual cortex

Goris, R., Henaff, O., Meding, K.

Computational and Systems Neuroscience (COSYNE) 2018, March 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Detailed Dense Inference with Convolutional Neural Networks via Discrete Wavelet Transform

Ma, L., Stueckler, J., Wu, T., Cremers, D.

arxiv, 2018, arXiv:1808.01834 (techreport)

ev

[BibTex]

[BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

7th AREADNE Conference on Research in Encoding and Decoding of Neural Ensembles, 2018 (poster)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Photorealistic Video Super Resolution

Pérez-Pellitero, E., Sajjadi, M. S. M., Hirsch, M., Schölkopf, B.

Workshop and Challenge on Perceptual Image Restoration and Manipulation (PIRM) at the 15th European Conference on Computer Vision (ECCV), 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Retinal image quality of the human eye across the visual field

Meding, K., Hirsch, M., Wichmann, F. A.

14th Biannual Conference of the German Society for Cognitive Science (KOGWIS 2018), 2018 (poster)

ei

[BibTex]

[BibTex]

2017


no image
Improving performance of linear field generation with multi-coil setup by optimizing coils position

Aghaeifar, A., Loktyushin, A., Eschelbach, M., Scheffler, K.

Magnetic Resonance Materials in Physics, Biology and Medicine, 30(Supplement 1):S259, 34th Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), October 2017 (poster)

ei

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]


no image
Estimating B0 inhomogeneities with projection FID navigator readouts

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Image Quality Improvement by Applying Retrospective Motion Correction on Quantitative Susceptibility Mapping and R2*

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

ESI Systems Neuroscience Conference (ESI-SyNC 2017): Principles of Structural and Functional Connectivity, 2017 (poster)

ei

[BibTex]

[BibTex]

2014


Model transport: towards scalable transfer learning on manifolds - supplemental material
Model transport: towards scalable transfer learning on manifolds - supplemental material

Freifeld, O., Hauberg, S., Black, M. J.

(9), April 2014 (techreport)

Abstract
This technical report is complementary to "Model Transport: Towards Scalable Transfer Learning on Manifolds" and contains proofs, explanation of the attached video (visualization of bases from the body shape experiments), and high-resolution images of select results of individual reconstructions from the shape experiments. It is identical to the supplemental mate- rial submitted to the Conference on Computer Vision and Pattern Recognition (CVPR 2014) on November 2013.

ps

PDF [BibTex]


no image
RoCKIn@Work in a Nutshell

Ahmad, A., Amigoni, A., Awaad, I., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Fontana, G., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schiaffonati, V., Schneider, S.

(FP7-ICT-601012 Revision 1.2), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, March 2014 (techreport)

Abstract
The main purpose of RoCKIn@Work is to foster innovation in industrial service robotics. Innovative robot applications for industry call for the capability to work interactively with humans and reduced initial programming requirements. This will open new opportunities to automate challenging manufacturing processes, even for small to medium-sized lots and highly customer-specific production requirements. Thereby, the RoCKIn competitions pave the way for technology transfer and contribute to the continued commercial competitiveness of European industry.

ps

[BibTex]

[BibTex]


no image
RoCKIn@Home in a Nutshell

Ahmad, A., Amigoni, F., Awaad, I., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Fontana, G., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schneider, S.

(FP7-ICT-601012 Revision 0.8), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, March 2014 (techreport)

Abstract
RoCKIn@Home is a competition that aims at bringing together the benefits of scientific benchmarking with the attraction of scientific competitions in the realm of domestic service robotics. The objectives are to bolster research in service robotics for home applications and to raise public awareness of the current and future capabilities of such robot systems to meet societal challenges like healthy ageing and longer independent living.

ps

[BibTex]

[BibTex]


no image
Dynamical source analysis of hippocampal sharp-wave ripple episodes

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

Bernstein Conference, 2014 (poster)

ei

DOI [BibTex]

DOI [BibTex]


no image
FID-guided retrospective motion correction based on autofocusing

Babayeva, M., Loktyushin, A., Kober, T., Granziera, C., Nickisch, H., Gruetter, R., Krueger, G.

Joint Annual Meeting ISMRM-ESMRMB, Milano, Italy, 2014 (poster)

ei

[BibTex]

[BibTex]


no image
Cluster analysis of sharp-wave ripple field potential signatures in the macaque hippocampus

Ramirez-Villegas, J. F., Logothetis, N. K., Besserve, M.

Computational and Systems Neuroscience Meeting (COSYNE), 2014 (poster)

ei

[BibTex]

[BibTex]


no image
oxel level [18]F-FDG PET/MRI unsupervised segmentation of the tumor microenvironment

Katiyar, P., Divine, M. R., Pichler, B. J., Disselhorst, J. A.

World Molecular Imaging Conference, 2014 (poster)

ei

[BibTex]

[BibTex]

1999


no image
Unexpected and anticipated pain: identification of specific brain activations by correlation with reference functions derived form conditioning theory

Ploghaus, A., Clare, S., Wichmann, F., Tracey, I.

29, 29th Annual Meeting of the Society for Neuroscience (Neuroscience), October 1999 (poster)

ei

[BibTex]

1999


[BibTex]


no image
Estimating the support of a high-dimensional distribution

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.

(MSR-TR-99-87), Microsoft Research, 1999 (techreport)

ei

Web [BibTex]

Web [BibTex]


no image
Single-class Support Vector Machines

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J.

Dagstuhl-Seminar on Unsupervised Learning, pages: 19-20, (Editors: J. Buhmann, W. Maass, H. Ritter and N. Tishby), 1999 (poster)

ei

[BibTex]

[BibTex]


no image
Generalization Bounds via Eigenvalues of the Gram matrix

Schölkopf, B., Shawe-Taylor, J., Smola, A., Williamson, R.

(99-035), NeuroCOLT, 1999 (techreport)

ei

[BibTex]

[BibTex]


no image
Pedestal effects with periodic pulse trains

Henning, G., Wichmann, F.

Perception, 28, pages: S137, 1999 (poster)

Abstract
It is important to know for theoretical reasons how performance varies with stimulus contrast. But, for objects on CRT displays, retinal contrast is limited by the linear range of the display and the modulation transfer function of the eye. For example, with an 8 c/deg sinusoidal grating at 90% contrast, the contrast of the retinal image is barely 45%; more retinal contrast is required, however, to discriminate among theories of contrast discrimination (Wichmann, Henning and Ploghaus, 1998). The stimulus with the greatest contrast at any spatial-frequency component is a periodic pulse train which has 200% contrast at every harmonic. Such a waveform cannot, of course, be produced; the best we can do with our Mitsubishi display provides a contrast of 150% at an 8-c/deg fundamental thus producing a retinal image with about 75% contrast. The penalty of using this stimulus is that the 2nd harmonic of the retinal image also has high contrast (with an emmetropic eye, more than 60% of the contrast of the 8-c/deg fundamental ) and the mean luminance is not large (24.5 cd/m2 on our display). We have used standard 2-AFC experiments to measure the detectability of an 8-c/deg pulse train against the background of an identical pulse train of different contrasts. An unusually large improvement in detetectability was measured, the pedestal effect or "dipper," and the dipper was unusually broad. The implications of these results will be discussed.

ei

[BibTex]

[BibTex]


no image
Sparse kernel feature analysis

Smola, A., Mangasarian, O., Schölkopf, B.

(99-04), Data Mining Institute, 1999, 24th Annual Conference of Gesellschaft f{\"u}r Klassifikation, University of Passau (techreport)

ei

PostScript [BibTex]

PostScript [BibTex]


no image
Implications of the pedestal effect for models of contrast-processing and gain-control

Wichmann, F., Henning, G.

OSA Conference Program, pages: 62, 1999 (poster)

Abstract
Understanding contrast processing is essential for understanding spatial vision. Pedestal contrast systematically affects slopes of functions relating 2-AFC contrast discrimination performance to pedestal contrast. The slopes provide crucial information because only full sets of data allow discrimination among contrast-processing and gain-control models. Issues surrounding Weber's law will also be discussed.

ei

[BibTex]