Header logo is


2018


no image
Detailed Dense Inference with Convolutional Neural Networks via Discrete Wavelet Transform

Ma, L., Stueckler, J., Wu, T., Cremers, D.

arxiv, 2018, arXiv:1808.01834 (techreport)

ev

[BibTex]

2018


[BibTex]

2014


Model transport: towards scalable transfer learning on manifolds - supplemental material
Model transport: towards scalable transfer learning on manifolds - supplemental material

Freifeld, O., Hauberg, S., Black, M. J.

(9), April 2014 (techreport)

Abstract
This technical report is complementary to "Model Transport: Towards Scalable Transfer Learning on Manifolds" and contains proofs, explanation of the attached video (visualization of bases from the body shape experiments), and high-resolution images of select results of individual reconstructions from the shape experiments. It is identical to the supplemental mate- rial submitted to the Conference on Computer Vision and Pattern Recognition (CVPR 2014) on November 2013.

ps

PDF [BibTex]


no image
RoCKIn@Work in a Nutshell

Ahmad, A., Amigoni, A., Awaad, I., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Fontana, G., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schiaffonati, V., Schneider, S.

(FP7-ICT-601012 Revision 1.2), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, March 2014 (techreport)

Abstract
The main purpose of RoCKIn@Work is to foster innovation in industrial service robotics. Innovative robot applications for industry call for the capability to work interactively with humans and reduced initial programming requirements. This will open new opportunities to automate challenging manufacturing processes, even for small to medium-sized lots and highly customer-specific production requirements. Thereby, the RoCKIn competitions pave the way for technology transfer and contribute to the continued commercial competitiveness of European industry.

ps

[BibTex]

[BibTex]


no image
RoCKIn@Home in a Nutshell

Ahmad, A., Amigoni, F., Awaad, I., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Fontana, G., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schneider, S.

(FP7-ICT-601012 Revision 0.8), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, March 2014 (techreport)

Abstract
RoCKIn@Home is a competition that aims at bringing together the benefits of scientific benchmarking with the attraction of scientific competitions in the realm of domestic service robotics. The objectives are to bolster research in service robotics for home applications and to raise public awareness of the current and future capabilities of such robot systems to meet societal challenges like healthy ageing and longer independent living.

ps

[BibTex]

[BibTex]

1998


no image
Generalization bounds and learning rates for Regularized principal manifolds

Smola, A., Williamson, R., Schölkopf, B.

NeuroCOLT, 1998, NeuroColt2-TR 1998-027 (techreport)

ei

[BibTex]

1998


[BibTex]


no image
Generalization Bounds for Convex Combinations of Kernel Functions

Smola, A., Williamson, R., Schölkopf, B.

Royal Holloway College, 1998 (techreport)

ei

[BibTex]

[BibTex]


no image
Generalization Performance of Regularization Networks and Support Vector Machines via Entropy Numbers of Compact Operators

Williamson, R., Smola, A., Schölkopf, B.

(19), NeuroCOLT, 1998, Accepted for publication in IEEE Transactions on Information Theory (techreport)

ei

[BibTex]

[BibTex]


no image
Quantization Functionals and Regularized PrincipalManifolds

Smola, A., Mika, S., Schölkopf, B.

NeuroCOLT, 1998, NC2-TR-1998-028 (techreport)

ei

[BibTex]

[BibTex]


no image
Support Vector Machine Reference Manual

Saunders, C., Stitson, M., Weston, J., Bottou, L., Schölkopf, B., Smola, A.

(CSD-TR-98-03), Department of Computer Science, Royal Holloway, University of London, 1998 (techreport)

ei

PostScript [BibTex]

PostScript [BibTex]

1996


no image
The DELVE user manual

Rasmussen, CE., Neal, RM., Hinton, GE., van Camp, D., Revow, M., Ghahramani, Z., Kustra, R., Tibshirani, R.

Department of Computer Science, University of Toronto, December 1996 (techreport)

Abstract
This manual describes the preliminary release of the DELVE environment. Some features described here have not yet implemented, as noted. Support for regression tasks is presently somewhat more developed than that for classification tasks. We recommend that you exercise caution when using this version of DELVE for real work, as it is possible that bugs remain in the software. We hope that you will send us reports of any problems you encounter, as well as any other comments you may have on the software or manual, at the e-mail address below. Please mention the version number of the manual and/or the software with any comments you send.

ei

GZIP [BibTex]

1996


GZIP [BibTex]


no image
Nonlinear Component Analysis as a Kernel Eigenvalue Problem

Schölkopf, B., Smola, A., Müller, K.

(44), Max Planck Institute for Biological Cybernetics Tübingen, December 1996, This technical report has also been published elsewhere (techreport)

Abstract
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in high-dimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible 5-pixel products in 16 x 16 images. We give the derivation of the method, along with a discussion of other techniques which can be made nonlinear with the kernel approach; and present first experimental results on nonlinear feature extraction for pattern recognition.

ei

[BibTex]

[BibTex]


no image
Learning View Graphs for Robot Navigation

Franz, M., Schölkopf, B., Georg, P., Mallot, H., Bülthoff, H.

(33), Max Planck Institute for Biological Cybernetics, Tübingen,, July 1996 (techreport)

Abstract
We present a purely vision-based scheme for learning a parsimonious representation of an open environment. Using simple exploration behaviours, our system constructs a graph of appropriately chosen views. To navigate between views connected in the graph, we employ a homing strategy inspired by findings of insect ethology. Simulations and robot experiments demonstrate the feasibility of the proposed approach.

ei

[BibTex]

[BibTex]


Mixture Models for Image Representation
Mixture Models for Image Representation

Jepson, A., Black, M.

PRECARN ARK Project Technical Report ARK96-PUB-54, March 1996 (techreport)

Abstract
We consider the estimation of local greylevel image structure in terms of a layered representation. This type of representation has recently been successfully used to segment various objects from clutter using either optical ow or stereo disparity information. We argue that the same type of representation is useful for greylevel data in that it allows for the estimation of properties for each of several different components without prior segmentation. Our emphasis in this paper is on the process used to extract such a layered representation from a given image In particular we consider a variant of the EM algorithm for the estimation of the layered model and consider a novel technique for choosing the number of layers to use. We briefly consider the use of a simple version of this approach for image segmentation and suggest two potential applications to the ARK project

ps

pdf [BibTex]

pdf [BibTex]