Header logo is


2016


Thumb xl smpl
Skinned multi-person linear model

Black, M.J., Loper, M., Mahmood, N., Pons-Moll, G., Romero, J.

December 2016, Application PCT/EP2016/064610 (misc)

Abstract
The invention comprises a learned model of human body shape and pose dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity- dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. The invention quantitatively evaluates variants of SMPL using linear or dual- quaternion blend skinning and show that both are more accurate than a Blend SCAPE model trained on the same data. In a further embodiment, the invention realistically models dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

ps

Google Patents [BibTex]

2016


Google Patents [BibTex]


no image
Numerical Investigation of Frictional Forces Between a Finger and a Textured Surface During Active Touch

Khojasteh, B., Janko, M., Visell, Y.

Extended abstract presented in form of an oral presentation at the 3rd International Conference on BioTribology (ICoBT), London, England, September 2016 (misc)

Abstract
The biomechanics of the human finger pad has been investigated in relation to motor behaviour and sensory function in the upper limb. While the frictional properties of the finger pad are important for grip and grasp function, recent attention has also been given to the roles played by friction when perceiving a surface via sliding contact. Indeed, the mechanics of sliding contact greatly affect stimuli felt by the finger scanning a surface. Past research has shed light on neural mechanisms of haptic texture perception, but the relation with time-resolved frictional contact interactions is unknown. Current biotribological models cannot predict time-resolved frictional forces felt by a finger as it slides on a rough surface. This constitutes a missing link in understanding the mechanical basis of texture perception. To ameliorate this, we developed a two-dimensional finite element numerical simulation of a human finger pad in sliding contact with a textured surface. Our model captures bulk mechanical properties, including hyperelasticity, dissipation, and tissue heterogeneity, and contact dynamics. To validate it, we utilized a database of measurements that we previously captured with a variety of human fingers and surfaces. By designing the simulations to match the measurements, we evaluated the ability of the FEM model to predict time-resolved sliding frictional forces. We varied surface texture wavelength, sliding speed, and normal forces in the experiments. An analysis of the results indicated that both time- and frequency-domain features of forces produced during finger-surface sliding interactions were reproduced, including many of the phenomena that we observed in analyses of real measurements, including quasiperiodicity, harmonic distortion and spectral decay in the frequency domain, and their dependence on kinetics and surface properties. The results shed light on frictional signatures of surface texture during active touch, and may inform understanding of the role played by friction in texture discrimination.

hi

[BibTex]

[BibTex]


Thumb xl romo and mini
Behavioral Analysis Automation for Music-Based Robotic Therapy for Children with Autism Spectrum Disorder

Burns, R., Nizambad, S., Park, C. H., Jeon, M., Howard, A.

Workshop paper (5 pages) at the RO-MAN Workshop on Behavior Adaptation, Interaction and Learning for Assistive Robotics, August 2016 (misc)

Abstract
In this full workshop paper, we discuss the positive impacts of robot, music, and imitation therapies on children with autism. We also discuss the use of Laban Motion Analysis (LMA) to identify emotion through movement and posture cues. We present our preliminary studies of the "Five Senses" game that our two robots, Romo the penguin and Darwin Mini, partake in. Using an LMA-focused approach (enabled by our skeletal tracking Kinect algorithm), we find that our participants show increased frequency of movement and speed when the game has a musical accompaniment. Therefore, participants may have increased engagement with our robots and game if music is present. We also begin exploring motion learning for future works.

hi

link (url) [BibTex]

link (url) [BibTex]


no image
Design and evaluation of a novel mechanical device to improve hemiparetic gait: a case report

Fjeld, K., Hu, S., Kuchenbecker, K. J., Vasudevan, E. V.

Extended abstract presented at the Biomechanics and Neural Control of Movement Conference (BANCOM), 2016, Poster presentation given by Fjeld (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl screen shot 2016 06 27 at 09.38.59
Implications of Action-Oriented Paradigm Shifts in Cognitive Science

Dominey, P. F., Prescott, T. J., Bohg, J., Engel, A. K., Gallagher, S., Heed, T., Hoffmann, M., Knoblich, G., Prinz, W., Schwartz, A.

In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 333-356, 20, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press

Abstract
An action-oriented perspective changes the role of an individual from a passive observer to an actively engaged agent interacting in a closed loop with the world as well as with others. Cognition exists to serve action within a landscape that contains both. This chapter surveys this landscape and addresses the status of the pragmatic turn. Its potential influence on science and the study of cognition are considered (including perception, social cognition, social interaction, sensorimotor entrainment, and language acquisition) and its impact on how neuroscience is studied is also investigated (with the notion that brains do not passively build models, but instead support the guidance of action). A review of its implications in robotics and engineering includes a discussion of the application of enactive control principles to couple action and perception in robotics as well as the conceptualization of system design in a more holistic, less modular manner. Practical applications that can impact the human condition are reviewed (e.g. educational applications, treatment possibilities for developmental and psychopathological disorders, the development of neural prostheses). All of this foreshadows the potential societal implications of the pragmatic turn. The chapter concludes that an action-oriented approach emphasizes a continuum of interaction between technical aspects of cognitive systems and robotics, biology, psychology, the social sciences, and the humanities, where the individual is part of a grounded cultural system.

am

The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science 18th Ernst Strüngmann Forum Bibliography Chapter link (url) [BibTex]

The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science 18th Ernst Strüngmann Forum Bibliography Chapter link (url) [BibTex]


Thumb xl looplearning
Learning Action-Perception Cycles in Robotics: A Question of Representations and Embodiment

Bohg, J., Kragic, D.

In The Pragmatic Turn - Toward Action-Oriented Views in Cognitive Science, 18, pages: 309-320, 18, Strüngmann Forum Reports, vol. 18, J. Lupp, series editor, (Editors: Andreas K. Engel and Karl J. Friston and Danica Kragic), The MIT Press, 18th Ernst Strüngmann Forum, May 2016 (incollection) In press

Abstract
Since the 1950s, robotics research has sought to build a general-purpose agent capable of autonomous, open-ended interaction with realistic, unconstrained environments. Cognition is perceived to be at the core of this process, yet understanding has been challenged because cognition is referred to differently within and across research areas, and is not clearly defined. The classic robotics approach is decomposition into functional modules which perform planning, reasoning, and problem-solving or provide input to these mechanisms. Although advancements have been made and numerous success stories reported in specific niches, this systems-engineering approach has not succeeded in building such a cognitive agent. The emergence of an action-oriented paradigm offers a new approach: action and perception are no longer separable into functional modules but must be considered in a complete loop. This chapter reviews work on different mechanisms for action- perception learning and discusses the role of embodiment in the design of the underlying representations and learning. It discusses the evaluation of agents and suggests the development of a new embodied Turing Test. Appropriate scenarios need to be devised in addition to current competitions, so that abilities can be tested over long time periods.

am

18th Ernst Strüngmann Forum The Pragmatic Turn- Toward Action-Oriented Views in Cognitive Science Bibliography Chapter link (url) [BibTex]

18th Ernst Strüngmann Forum The Pragmatic Turn- Toward Action-Oriented Views in Cognitive Science Bibliography Chapter link (url) [BibTex]


no image
One Sensor, Three Displays: A Comparison of Tactile Rendering from a BioTac Sensor

Brown, J. D., Ibrahim, M., Chase, E. D. Z., Pacchierotti, C., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE Haptics Symposium, Philadelphia, Pennsylvania, USA, April 2016 (misc)

hi

[BibTex]

[BibTex]


no image
Special Issue on Causal Discovery and Inference

Zhang, K., Li, J., Bareinboim, E., Schölkopf, B., Pearl, J.

ACM Transactions on Intelligent Systems and Technology (TIST), 7(2), January 2016, (Guest Editors) (misc)

ei

[BibTex]

[BibTex]


no image
Empirical Inference (2010-2015)
Scientific Advisory Board Report, 2016 (misc)

ei

pdf [BibTex]

pdf [BibTex]


no image
Unsupervised Domain Adaptation in the Wild : Dealing with Asymmetric Label Set

Mittal, A., Raj, A., Namboodiri, V. P., Tuytelaars, T.

2016 (misc)

ei

Arxiv [BibTex]

Arxiv [BibTex]


no image
Designing Human-Robot Exercise Games for Baxter

Fitter, N. T., Hawkes, D. T., Johnson, M. J., Kuchenbecker, K. J.

2016, Late-breaking results report presented at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Annales des Concours 2016 MP Mathématiques, Informatique

Batog, G., Dumont, J., Puyhaubert, V.

In corrigés des problèmes posés aux concours CCP, Centrale/Supélec, Mines/Ponts, X/ENS, 2016 (inbook)

H&K Éditions [BibTex]

H&K Éditions [BibTex]


no image
Sustainable effects of simulator-based training on ecological driving

Lüderitz, C., Wirzberger, M., Karrer-Gauß, K.

In Advances in Ergonomic Design of Systems, Products and Processes. Proceedings of the Annual Meeting of the GfA 2015, pages: 463-475, Springer, 2016 (inbook)

Abstract
Simulation-based driver training offers a promising way to teach ecological driving behavior under controlled, comparable conditions. In a study with 23 professional drivers, we tested the effectiveness of such training. The driving behavior of a training group in a simulated drive with and without instructions were compared. Ten weeks later, a repetition drive tested the long-term effect training. Driving data revealed reduced fuel consumption by ecological driving in both the guided and repetition drives. Driving time decreased significantly in the training and did not differ from driving time after 10 weeks. Results did not achieve significance for transfer to test drives in real traffic situations. This may be due to the small sample size and biased data as a result of unusual driving behavior. Finally, recent and promising approaches to support drivers in maintaining eco-driving styles beyond training situations are outlined.

re

DOI [BibTex]

DOI [BibTex]


no image
Nonlinear functional causal models for distinguishing cause from effect

Zhang, K., Hyvärinen, A.

In Statistics and Causality: Methods for Applied Empirical Research, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)

ei

[BibTex]

[BibTex]


Thumb xl sabteaser
Perceiving Systems (2011-2015)
Scientific Advisory Board Report, 2016 (misc)

ps

pdf [BibTex]

pdf [BibTex]


no image
A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis

Hohmann, M., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.

In Brain-Computer Interfaces: Lab Experiments to Real-World Applications, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Locally Weighted Regression for Control

Ting, J., Meier, F., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning and Data Mining, pages: 1-14, Springer US, Boston, MA, 2016 (inbook)

am

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Screening Rules for Convex Problems

Raj, A., Olbrich, J., Gärtner, B., Schölkopf, B., Jaggi, M.

2016 (unpublished) Submitted

ei

[BibTex]

[BibTex]


no image
Extrapolation and learning equations

Martius, G., Lampert, C. H.

2016, arXiv preprint \url{https://arxiv.org/abs/1610.02995} (misc)

al

Project Page [BibTex]

Project Page [BibTex]


no image
IMU-Mediated Real-Time Human-Baxter Hand-Clapping Interaction

Fitter, N. T., Huang, Y. E., Mayer, J. P., Kuchenbecker, K. J.

2016, Late-breaking results report presented at the {\em IEEE/RSJ International Conference on Intelligent Robots and Systems} (misc)

hi

[BibTex]

[BibTex]

2008


no image
New Frontiers in Characterizing Structure and Dynamics by NMR

Nilges, M., Markwick, P., Malliavin, TE., Rieping, W., Habeck, M.

In Computational Structural Biology: Methods and Applications, pages: 655-680, (Editors: Schwede, T. , M. C. Peitsch), World Scientific, New Jersey, NJ, USA, May 2008 (inbook)

Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as the method of choice for studying both the structure and the dynamics of biological macromolecule in solution. Despite the maturity of the NMR method for structure determination, its application faces a number of challenges. The method is limited to systems of relatively small molecular mass, data collection times are long, data analysis remains a lengthy procedure, and it is difficult to evaluate the quality of the final structures. The last years have seen significant advances in experimental techniques to overcome or reduce some limitations. The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time–scales from picoseconds to seconds. NMR is unique in its ability to obtain dynamic information on an atomic scale. The experimental information on structure and dynamics is intricately mixed. It is however difficult to unite both structural and dynamical information into one consistent model, and protocols for the determination of structure and dynamics are performed independently. This chapter deals with the challenges posed by the interpretation of NMR data on structure and dynamics. We will first relate the standard structure calculation methods to Bayesian probability theory. We will then briefly describe the advantages of a fully Bayesian treatment of structure calculation. Then, we will illustrate the advantages of using Bayesian reasoning at least partly in standard structure calculations. The final part will be devoted to interpretation of experimental data on dynamics.

ei

Web [BibTex]

2008


Web [BibTex]


no image
Measurement-Based Modeling for Haptic Rendering

Okamura, A. M., Kuchenbecker, K. J., Mahvash, M.

In Haptic Rendering: Algorithms and Applications, pages: 443-467, 21, A. K. Peters, May 2008 (incollection)

hi

[BibTex]

[BibTex]


no image
The Touch Thimble

Kuchenbecker, K. J., Ferguson, D., Kutzer, M., Moses, M., Okamura, A. M.

Hands-on demonstration presented at IEEE Haptics Symposium, Reno, Nevada, USA, March 2008 (misc)

hi

[BibTex]

[BibTex]


no image
A Robot System for Biomimetic Navigation: From Snapshots to Metric Embeddings of View Graphs

Franz, MO., Stürzl, W., Reichardt, W., Mallot, HA.

In Robotics and Cognitive Approaches to Spatial Mapping, pages: 297-314, Springer Tracts in Advanced Robotics ; 38, (Editors: Jefferies, M.E. , W.-K. Yeap), Springer, Berlin, Germany, 2008 (inbook)

Abstract
Complex navigation behaviour (way-finding) involves recognizing several places and encoding a spatial relationship between them. Way-finding skills can be classified into a hierarchy according to the complexity of the tasks that can be performed [8]. The most basic form of way-finding is route navigation, followed by topological navigation where several routes are integrated into a graph-like representation. The highest level, survey navigation, is reached when this graph can be embedded into a common reference frame. In this chapter, we present the building blocks for a biomimetic robot navigation system that encompasses all levels of this hierarchy. As a local navigation method, we use scene-based homing. In this scheme, a goal location is characterized either by a panoramic snapshot of the light intensities as seen from the place, or by a record of the distances to the surrounding objects. The goal is found by moving in the direction that minimizes the discrepancy between the recorded intensities or distances and the current sensory input. For learning routes, the robot selects distinct views during exploration that are close enough to be reached by snapshot-based homing. When it encounters already visited places during route learning, it connects the routes and thus forms a topological representation of its environment termed a view graph. The final stage, survey navigation, is achieved by a graph embedding procedure which complements the topologic information of the view graph with odometric position estimates. Calculation of the graph embedding is done with a modified multidimensional scaling algorithm which makes use of distances and angles between nodes.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Hydrogen adsorption (Carbon, Zeolites, Nanocubes)

Hirscher, M., Panella, B.

In Hydrogen as a Future Energy Carrier, pages: 173-188, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008 (incollection)

mms

[BibTex]

[BibTex]


no image
Ma\ssgeschneiderte Speichermaterialien

Hirscher, M.

In Von Brennstoffzellen bis Leuchtdioden (Energie und Chemie - Ein Bündnis für die Zukunft), pages: 31-33, Deutsche Bunsen-Gesellschaft für Physikalische Chemie e.V., Frankfurt am Main, 2008 (incollection)

mms

[BibTex]

[BibTex]

2005


no image
Adhesive microstructure and method of forming same

Fearing, R. S., Sitti, M.

March 2005, US Patent 6,872,439 (misc)

pi

[BibTex]

2005


[BibTex]


no image
Event-Based Haptic Feedback

Kuchenbecker, K. J., Fiene, J. P., Niemeyer, G.

Hands-on demonstration at IEEE World Haptics Conference, Pisa, Italy, March 2005 (misc)

hi

[BibTex]

[BibTex]


no image
Support Vector Machines and Kernel Algorithms

Schölkopf, B., Smola, A.

In Encyclopedia of Biostatistics (2nd edition), Vol. 8, 8, pages: 5328-5335, (Editors: P Armitage and T Colton), John Wiley & Sons, NY USA, 2005 (inbook)

ei

[BibTex]

[BibTex]


no image
Visual perception I: Basic principles

Wagemans, J., Wichmann, F., de Beeck, H.

In Handbook of Cognition, pages: 3-47, (Editors: Lamberts, K. , R. Goldstone), Sage, London, 2005 (inbook)

ei

[BibTex]

[BibTex]


no image
Geckobot and waalbot: Small-scale wall climbing robots

Unver, O., Murphy, M., Sitti, M.

In Infotech@ Aerospace, pages: 6940, 2005 (incollection)

pi

[BibTex]

[BibTex]