Header logo is


2017


no image
Elements of Causal Inference - Foundations and Learning Algorithms

Peters, J., Janzing, D., Schölkopf, B.

Adaptive Computation and Machine Learning Series, The MIT Press, Cambridge, MA, USA, 2017 (book)

ei

PDF [BibTex]

2017


PDF [BibTex]


Mobile Microrobotics
Mobile Microrobotics

Sitti, M.

Mobile Microrobotics, The MIT Press, Cambridge, MA, 2017 (book)

Abstract
Progress in micro- and nano-scale science and technology has created a demand for new microsystems for high-impact applications in healthcare, biotechnology, manufacturing, and mobile sensor networks. The new robotics field of microrobotics has emerged to extend our interactions and explorations to sub-millimeter scales. This is the first textbook on micron-scale mobile robotics, introducing the fundamentals of design, analysis, fabrication, and control, and drawing on case studies of existing approaches. The book covers the scaling laws that can be used to determine the dominant forces and effects at the micron scale; models forces acting on microrobots, including surface forces, friction, and viscous drag; and describes such possible microfabrication techniques as photo-lithography, bulk micromachining, and deep reactive ion etching. It presents on-board and remote sensing methods, noting that remote sensors are currently more feasible; studies possible on-board microactuators; discusses self-propulsion methods that use self-generated local gradients and fields or biological cells in liquid environments; and describes remote microrobot actuation methods for use in limited spaces such as inside the human body. It covers possible on-board powering methods, indispensable in future medical and other applications; locomotion methods for robots on surfaces, in liquids, in air, and on fluid-air interfaces; and the challenges of microrobot localization and control, in particular multi-robot control methods for magnetic microrobots. Finally, the book addresses current and future applications, including noninvasive medical diagnosis and treatment, environmental remediation, and scientific tools.

pi

Mobile Microrobotics By Metin Sitti - Chapter 1 (PDF) link (url) [BibTex]

Mobile Microrobotics By Metin Sitti - Chapter 1 (PDF) link (url) [BibTex]


no image
New Directions for Learning with Kernels and Gaussian Processes (Dagstuhl Seminar 16481)

Gretton, A., Hennig, P., Rasmussen, C., Schölkopf, B.

Dagstuhl Reports, 6(11):142-167, 2017 (book)

ei pn

DOI [BibTex]

DOI [BibTex]


Design of a visualization scheme for functional connectivity data of Human Brain
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]

2014


Advanced Structured Prediction
Advanced Structured Prediction

Nowozin, S., Gehler, P. V., Jancsary, J., Lampert, C. H.

Advanced Structured Prediction, pages: 432, Neural Information Processing Series, MIT Press, November 2014 (book)

Abstract
The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning.

ps

publisher link (url) [BibTex]

2014


publisher link (url) [BibTex]


no image
Learning Motor Skills: From Algorithms to Robot Experiments

Kober, J., Peters, J.

97, pages: 191, Springer Tracts in Advanced Robotics, Springer, 2014 (book)

ei

DOI [BibTex]

DOI [BibTex]


no image
Computational Diffusion MRI and Brain Connectivity

Schultz, T., Nedjati-Gilani, G., Venkataraman, A., O’Donnell, L., Panagiotaki, E.

pages: 255, Mathematics and Visualization, Springer, 2014 (book)

ei

Web [BibTex]

Web [BibTex]


Human Pose Estimation from Video and Inertial Sensors
Human Pose Estimation from Video and Inertial Sensors

Pons-Moll, G.

Ph.D Thesis, -, 2014 (book)

Abstract
The analysis and understanding of human movement is central to many applications such as sports science, medical diagnosis and movie production. The ability to automatically monitor human activity in security sensitive areas such as airports, lobbies or borders is of great practical importance. Furthermore, automatic pose estimation from images leverages the processing and understanding of massive digital libraries available on the Internet. We build upon a model based approach where the human shape is modelled with a surface mesh and the motion is parametrized by a kinematic chain. We then seek for the pose of the model that best explains the available observations coming from different sensors. In a first scenario, we consider a calibrated mult-iview setup in an indoor studio. To obtain very accurate results, we propose a novel tracker that combines information coming from video and a small set of Inertial Measurement Units (IMUs). We do so by locally optimizing a joint energy consisting of a term that measures the likelihood of the video data and a term for the IMU data. This is the first work to successfully combine video and IMUs information for full body pose estimation. When compared to commercial marker based systems the proposed solution is more cost efficient and less intrusive for the user. In a second scenario, we relax the assumption of an indoor studio and we tackle outdoor scenes with background clutter, illumination changes, large recording volumes and difficult motions of people interacting with objects. Again, we combine information from video and IMUs. Here we employ a particle based optimization approach that allows us to be more robust to tracking failures. To satisfy the orientation constraints imposed by the IMUs, we derive an analytic Inverse Kinematics (IK) procedure to sample from the manifold of valid poses. The generated hypothesis come from a lower dimensional manifold and therefore the computational cost can be reduced. Experiments on challenging sequences suggest the proposed tracker can be applied to capture in outdoor scenarios. Furthermore, the proposed IK sampling procedure can be used to integrate any kind of constraints derived from the environment. Finally, we consider the most challenging possible scenario: pose estimation of monocular images. Here, we argue that estimating the pose to the degree of accuracy as in an engineered environment is too ambitious with the current technology. Therefore, we propose to extract meaningful semantic information about the pose directly from image features in a discriminative fashion. In particular, we introduce posebits which are semantic pose descriptors about the geometric relationships between parts in the body. The experiments show that the intermediate step of inferring posebits from images can improve pose estimation from monocular imagery. Furthermore, posebits can be very useful as input feature for many computer vision algorithms.

ps

pdf [BibTex]

2012


no image
Experimentelle Induktion beeinträchtigter Aufmerksamkeit im Kontext des seductive detail Effekts

Wirzberger, M.

University of Hagen, 2012 (thesis)

Abstract
Die vorliegende Arbeit untersucht ausgehend von der Cognitive Theory of Multimedia Learning (CTML) einen aufmerksamkeitsbezogenen Erklärungsansatz für den seductive detail Effekt. Dieser Effekt resultiert aus dem Einfügen interessanter, jedoch irrelevanter Informationen in einen Lerntext, die die Lernleistung beeinträchtigen. Im Besonderen steht hier die Hypothese im Fokus, dass sich seductive details stärker auswirken, wenn bereits eine Beeinträchtigung der Aufmerksamkeit vorliegt. Im Rahmen einer experimentellen Erhebung mit 53 Studierenden wurde anhand eines 2x2-faktoriellen, multivariaten Designs die Anwesenheit von seductive details (durch seduktive Textpassagen), sowie beeinträchtigter Aufmerksamkeit (durch die Einblendung ablenkender Systemmitteilungen), gezielt manipuliert und deren Effekt auf die Behaltens- und Verstehensleistung, sowie die Lernzeit erfasst. In den Analysen zeigte sich eine signifikante Verlängerung der Lernzeit durch das Einfügen seduktiver Textpassagen, und darüber hinaus wurde auch ein moderierender Einfluss des bestehenden Aufmerksamkeitsniveaus deutlich. Weder die Behaltens- noch die Verstehensleistung verringerte sich jedoch signifikant durch das Hinzufügen von seductive details oder die Induktion beeinträchtigter Aufmerksamkeit, und auch eine signifikante Wechselwirkung zwischen beiden Aspekten wurde nicht deutlich. Daher wird abschließend die Relevanz komplexer statistischer Analyseverfahren zur weiteren Erhellung der zugrundeliegenden Wirkmechanismen diskutiert.

re

DOI [BibTex]


no image
The Playful Machine - Theoretical Foundation and Practical Realization of Self-Organizing Robots

Der, R., Martius, G.

Springer, Berlin Heidelberg, 2012 (book)

Abstract
Autonomous robots may become our closest companions in the near future. While the technology for physically building such machines is already available today, a problem lies in the generation of the behavior for such complex machines. Nature proposes a solution: young children and higher animals learn to master their complex brain-body systems by playing. Can this be an option for robots? How can a machine be playful? The book provides answers by developing a general principle---homeokinesis, the dynamical symbiosis between brain, body, and environment---that is shown to drive robots to self-determined, individual development in a playful and obviously embodiment-related way: a dog-like robot starts playing with a barrier, eventually jumping or climbing over it; a snakebot develops coiling and jumping modes; humanoids develop climbing behaviors when fallen into a pit, or engage in wrestling-like scenarios when encountering an opponent. The book also develops guided self-organization, a new method that helps to make the playful machines fit for fulfilling tasks in the real world.

al

link (url) [BibTex]


Consumer Depth Cameras for Computer Vision - Research Topics and Applications
Consumer Depth Cameras for Computer Vision - Research Topics and Applications

Fossati, A., Gall, J., Grabner, H., Ren, X., Konolige, K.

Advances in Computer Vision and Pattern Recognition, Springer, 2012 (book)

ps

workshop publisher's site [BibTex]

workshop publisher's site [BibTex]

2007


no image
Predicting Structured Data

Bakir, G., Hofmann, T., Schölkopf, B., Smola, A., Taskar, B., Vishwanathan, S.

pages: 360, Advances in neural information processing systems, MIT Press, Cambridge, MA, USA, September 2007 (book)

Abstract
Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning’s greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field.

ei

Web [BibTex]

2007


Web [BibTex]


no image
Large-Scale Kernel Machines

Bottou, L., Chapelle, O., DeCoste, D., Weston, J.

pages: 416, Neural Information Processing Series, MIT Press, Cambridge, MA, USA, September 2007 (book)

Abstract
Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale datasets, with detailed descriptions of algorithms and experiments carried out on realistically large datasets. At the same time it offers researchers information that can address the relative lack of theoretical grounding for many useful algorithms. After a detailed description of state-of-the-art support vector machine technology, an introduction of the essential concepts discussed in the volume, and a comparison of primal and dual optimization techniques, the book progresses from well-understood techniques to more novel and controversial approaches. Many contributors have made their code and data available online for further experimentation. Topics covered include fast implementations of known algorithms, approximations that are amenable to theoretical guarantees, and algorithms that perform well in practice but are difficult to analyze theoretically.

ei

Web [BibTex]

Web [BibTex]

2002


no image
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond

Schölkopf, B., Smola, A.

pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)

Abstract
In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

ei

Web [BibTex]

2002


Web [BibTex]

1997


no image
Support vector learning

Schölkopf, B.

pages: 173, Oldenbourg, München, Germany, 1997, Zugl.: Berlin, Techn. Univ., Diss., 1997 (book)

ei

PDF GZIP [BibTex]

1997


PDF GZIP [BibTex]