Header logo is


2017


no image
Computing with Uncertainty

Hennig, P.

2017 (mpi_year_book)

Abstract
Machine learning requires computer hardware to reliable and efficiently compute estimations for ever more complex and fundamentally incomputable quantities. A research team at MPI for Intelligent Systems in Tübingen develops new algorithms which purposely lower the precision of computations and return an explicit measure of uncertainty over the correct result alongside the estimate. Doing so allows for more flexible management of resources, and increases the reliability of intelligent systems.

link (url) DOI [BibTex]


no image
Biomechanics and Locomotion Control in Legged Animals and Legged Robots

Sproewitz, A., Heim, S.

2017 (mpi_year_book)

Abstract
An animal's running gait is dynamic, efficient, elegant, and adaptive. We see locomotion in animals as an orchestrated interplay of the locomotion apparatus, interacting with its environment. The Dynamic Locomotion Group at the Max Planck Institute for Intelligent Systems in Stuttgart develops novel legged robots to decipher aspects of biomechanics and neuromuscular control of legged locomotion in animals, and to understand general principles of locomotion.

link (url) DOI [BibTex]


Thumb xl paraview preview
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]

2013


Thumb xl implied flow whue
Puppet Flow

Zuffi, S., Black, M. J.

(7), Max Planck Institute for Intelligent Systems, October 2013 (techreport)

Abstract
We introduce Puppet Flow (PF), a layered model describing the optical flow of a person in a video sequence. We consider video frames composed by two layers: a foreground layer corresponding to a person, and background. We model the background as an affine flow field. The foreground layer, being a moving person, requires reasoning about the articulated nature of the human body. We thus represent the foreground layer with the Deformable Structures model (DS), a parametrized 2D part-based human body representation. We call the motion field defined through articulated motion and deformation of the DS model, a Puppet Flow. By exploiting the DS representation, Puppet Flow is a parametrized optical flow field, where parameters are the person's pose, gender and body shape.

ps

pdf Project Page Project Page [BibTex]

2013


pdf Project Page Project Page [BibTex]


no image
D2.1.4 RoCKIn@Work - Innovation in Mobile Industrial Manipulation Competition Design, Rule Book, and Scenario Construction

Ahmad, A., Awaad, I., Amigoni, F., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schneider, S.

(FP7-ICT-601012 Revision 0.7), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, sep 2013 (techreport)

Abstract
RoCKIn is a EU-funded project aiming to foster scientific progress and innovation in cognitive systems and robotics through the design and implementation of competitions. An additional objective of RoCKIn is to increase public awareness of the current state-of-the-art in robotics in Europe and to demonstrate the innovation potential of robotics applications for solving societal challenges and improving the competitiveness of Europe in the global markets. In order to achieve these objectives, RoCKIn develops two competitions, one for domestic service robots (RoCKIn@Home) and one for industrial robots in factories (RoCKIn-@Work). These competitions are designed around challenges that are based on easy-to-communicate and convincing user stories, which catch the interest of both the general public and the scientifc community. The latter is in particular interested in solving open scientific challenges and to thoroughly assess, compare, and evaluate the developed approaches with competing ones. To allow this to happen, the competitions are designed to meet the requirements of benchmarking procedures and good experimental methods. The integration of benchmarking technology with the competition concept is one of the main objectives of RoCKIn. This document describes the first version of the RoCKIn@Work competition, which will be held for the first time in 2014. The first chapter of the document gives a brief overview, outlining the purpose and objective of the competition, the methodological approach taken by the RoCKIn project, the user story upon which the competition is based, the structure and organization of the competition, and the commonalities and differences with the RoboCup@Work competition, which served as inspiration for RoCKIn@Work. The second chapter provides details on the user story and analyzes the scientific and technical challenges it poses. Consecutive chapters detail the competition scenario, the competition design, and the organization of the competition. The appendices contain information on a library of functionalities, which we believe are needed, or at least useful, for building competition entries, details on the scenario construction, and a detailed account of the benchmarking infrastructure needed — and provided by RoCKIn.

ps

[BibTex]

[BibTex]


no image
D2.1.1 RoCKIn@Home - A Competition for Domestic Service Robots Competition Design, Rule Book, and Scenario Construction

Ahmad, A., Awaad, I., Amigoni, F., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schneider, S.

(FP7-ICT-601012 Revision 0.7), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, sep 2013 (techreport)

Abstract
RoCKIn is a EU-funded project aiming to foster scientific progress and innovation in cognitive systems and robotics through the design and implementation of competitions. An additional objective of RoCKIn is to increase public awareness of the current state-of-the-art in robotics in Europe and to demonstrate the innovation potential of robotics applications for solving societal challenges and improving the competitiveness of Europe in the global markets. In order to achieve these objectives, RoCKIn develops two competitions, one for domestic service robots (RoCKIn@Home) and one for industrial robots in factories (RoCKIn-@Work). These competitions are designed around challenges that are based on easy-to-communicate and convincing user stories, which catch the interest of both the general public and the scientifc community. The latter is in particular interested in solving open scientific challenges and to thoroughly assess, compare, and evaluate the developed approaches with competing ones. To allow this to happen, the competitions are designed to meet the requirements of benchmarking procedures and good experimental methods. The integration of benchmarking technology with the competition concept is one of the main objectives of RoCKIn. This document describes the first version of the RoCKIn@Home competition, which will be held for the first time in 2014. The first chapter of the document gives a brief overview, outlining the purpose and objective of the competition, the methodological approach taken by the RoCKIn project, the user story upon which the competition is based, the structure and organization of the competition, and the commonalities and differences with the RoboCup@Home competition, which served as inspiration for RoCKIn@Home. The second chapter provides details on the user story and analyzes the scientific and technical challenges it poses. Consecutive chapters detail the competition scenario, the competition design, and the organization of the competition. The appendices contain information on a library of functionalities, which we believe are needed, or at least useful, for building competition entries, details on the scenario construction, and a detailed account of the benchmarking infrastructure needed — and provided by RoCKIn.

ps

[BibTex]

[BibTex]


no image
D1.1 Specification of General Features of Scenarios and Robots for Benchmarking Through Competitions

Ahmad, A., Awaad, I., Amigoni, F., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Fontana, G., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schiaffonati, V., Schneider, S.

(FP7-ICT-601012 Revision 1.0), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, July 2013 (techreport)

Abstract
RoCKIn is a EU-funded project aiming to foster scientific progress and innovation in cognitive systems and robotics through the design and implementation of competitions. An additional objective of RoCKIn is to increase public awareness of the current state-of-the-art in robotics and the innovation potential of robotics applications. From these objectives several requirements for the work performed in RoCKIn can be derived: The RoCKIn competitions must start from convincing, easy-to-communicate user stories, that catch the attention of relevant stakeholders, the media, and the crowd. The user stories play the role of a mid- to long-term vision for a competition. Preferably, the user stories address economic, societal, or environmental problems. The RoCKIn competitions must pose open scientific challenges of interest to sufficiently many researchers to attract existing and new teams of robotics researchers for participation in the competition. The competitions need to promise some suitable reward, such as recognition in the scientific community, publicity for a team’s work, awards, or prize money, to justify the effort a team puts into the development of a competition entry. The competitions should be designed in such a way that they reward general, scientifically sound solutions to the challenge problems; such general solutions should score better than approaches that work only in narrowly defined contexts and are considred over-engineered. The challenges motivating the RoCKIn competitions must be broken down into suitable intermediate goals that can be reached with a limited team effort until the next competition and the project duration. The RoCKIn competitions must be well-defined and well-designed, with comprehensive rule books and instructions for the participants in order to guarantee a fair competition. The RoCKIn competitions must integrate competitions with benchmarking in order to provide comprehensive feedback for the teams about the suitability of particular functional modules, their overall architecture, and system integration. This document takes the first steps towards the RoCKIn goals. After outlining our approach, we present several user stories for further discussion within the community. The main objectives of this document are to identify and document relevant scenario features and the tasks and functionalities subject for benchmarking in the competitions.

ps

[BibTex]

[BibTex]


no image
SocRob-MSL 2013 Team Description Paper for Middle Sized League

Messias, J., Ahmad, A., Reis, J., Serafim, M., Lima, P.

17th Annual RoboCup International Symposium 2013, July 2013 (techreport)

Abstract
This paper describes the status of the SocRob MSL robotic soccer team as required by the RoboCup 2013 qualification procedures. The team’s latest scientific and technical developments, since its last participation in RoboCup MSL, include further advances in cooperative perception; novel communication methods for distributed robotics; progressive deployment of the ROS middleware; improved localization through feature tracking and Mixture MCL; novel planning methods based on Petri nets and decision-theoretic frameworks; and hardware developments in ball-handling/kicking devices.

ps

link (url) [BibTex]

link (url) [BibTex]


Thumb xl submodularity nips
Learning and Optimization with Submodular Functions

Sankaran, B., Ghazvininejad, M., He, X., Kale, D., Cohen, L.

ArXiv, May 2013 (techreport)

Abstract
In many naturally occurring optimization problems one needs to ensure that the definition of the optimization problem lends itself to solutions that are tractable to compute. In cases where exact solutions cannot be computed tractably, it is beneficial to have strong guarantees on the tractable approximate solutions. In order operate under these criterion most optimization problems are cast under the umbrella of convexity or submodularity. In this report we will study design and optimization over a common class of functions called submodular functions. Set functions, and specifically submodular set functions, characterize a wide variety of naturally occurring optimization problems, and the property of submodularity of set functions has deep theoretical consequences with wide ranging applications. Informally, the property of submodularity of set functions concerns the intuitive principle of diminishing returns. This property states that adding an element to a smaller set has more value than adding it to a larger set. Common examples of submodular monotone functions are entropies, concave functions of cardinality, and matroid rank functions; non-monotone examples include graph cuts, network flows, and mutual information. In this paper we will review the formal definition of submodularity; the optimization of submodular functions, both maximization and minimization; and finally discuss some applications in relation to learning and reasoning using submodular functions.

am

arxiv link (url) [BibTex]

arxiv link (url) [BibTex]


Thumb xl secretstr
A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them

Sun, D., Roth, S., Black, M. J.

(CS-10-03), Brown University, Department of Computer Science, January 2013 (techreport)

ps

pdf [BibTex]

pdf [BibTex]


no image
Animating Samples from Gaussian Distributions

Hennig, P.

(8), Max Planck Institute for Intelligent Systems, Tübingen, Germany, 2013 (techreport)

ei pn

PDF [BibTex]

PDF [BibTex]


no image
Proceedings of the 10th European Workshop on Reinforcement Learning, Volume 24

Deisenroth, M., Szepesvári, C., Peters, J.

pages: 173, JMLR, European Workshop On Reinforcement Learning, EWRL, 2013 (proceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Perceiving Systems – Computers that see

Gehler, P. V.

2013 (mpi_year_book)

Abstract
Our research goal is to define in a mathematical precise way how visual perception works. We want to describe how intelligent systems understand images. To this end we study probabilistic models and statistical learning. Encoding prior knowledge about the world is complemented with automatic learning from training data. One aspect is being able to identify physical factors in images, such as lighting, geometry, and materials. Furthermore we want to automatically recognize and give names to objects and persons in images and understand the scene as a whole.

link (url) [BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Detailed models of the focal plane in the two-wheel era

Hogg, D. W., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Lang, D., Montet, B. T., Schiminovich, D., Schölkopf, B.

arXiv:1309.0653, 2013 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Being small, being smart

Liu, Na

2013 (mpi_year_book)

Abstract
Metallic nanostructures feature plasmonic resonances which spatially confine light on the nanometer scale. In the ultimate limit of a single nanostructure, the electromagnetic field can be strongly concentrated in a volume of only a few hundred nm3 or less. We utilize such plasmonic focusing for hydrogen detection at the single particle level, which avoids any inhomogeneous broadening and statistical effects that would occur in sensors based on nanoparticle ensembles. This concept paves the road towards the observation of single catalytic processes in nanoreactors.

link (url) [BibTex]

link (url) [BibTex]


no image
Maximizing Kepler science return per telemetered pixel: Searching the habitable zones of the brightest stars

Montet, B. T., Angus, R., Barclay, T., Dawson, R., Fergus, R., Foreman-Mackey, D., Harmeling, S., Hirsch, M., Hogg, D. W., Lang, D., Schiminovich, D., Schölkopf, B.

arXiv:1309.0654, 2013 (techreport)

ei

link (url) [BibTex]

link (url) [BibTex]

2006


no image
A New Projected Quasi-Newton Approach for the Nonnegative Least Squares Problem

Kim, D., Sra, S., Dhillon, I.

(TR-06-54), Univ. of Texas, Austin, December 2006 (techreport)

ei

PDF [BibTex]

2006


PDF [BibTex]


no image
Probabilistic inference for solving (PO)MDPs

Toussaint, M., Harmeling, S., Storkey, A.

(934), School of Informatics, University of Edinburgh, December 2006 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


no image
Minimal Logical Constraint Covering Sets

Sinz, F., Schölkopf, B.

(155), Max Planck Institute for Biological Cybernetics, Tübingen, December 2006 (techreport)

Abstract
We propose a general framework for computing minimal set covers under class of certain logical constraints. The underlying idea is to transform the problem into a mathematical programm under linear constraints. In this sense it can be seen as a natural extension of the vector quantization algorithm proposed by Tipping and Schoelkopf. We show which class of logical constraints can be cast and relaxed into linear constraints and give an algorithm for the transformation.

ei

PDF [BibTex]

PDF [BibTex]


no image
New Methods for the P300 Visual Speller

Biessmann, F.

(1), (Editors: Hill, J. ), Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, November 2006 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


no image
Geometric Analysis of Hilbert Schmidt Independence criterion based ICA contrast function

Shen, H., Jegelka, S., Gretton, A.

(PA006080), National ICT Australia, Canberra, Australia, October 2006 (techreport)

ei

Web [BibTex]

Web [BibTex]


no image
A tutorial on spectral clustering

von Luxburg, U.

(149), Max Planck Institute for Biological Cybernetics, Tübingen, August 2006 (techreport)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. Nevertheless, on the first glance spectral clustering looks a bit mysterious, and it is not obvious to see why it works at all and what it really does. This article is a tutorial introduction to spectral clustering. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF [BibTex]

PDF [BibTex]


no image
Towards the Inference of Graphs on Ordered Vertexes

Zien, A., Raetsch, G., Ong, C.

(150), Max Planck Institute for Biological Cybernetics, Tübingen, August 2006 (techreport)

Abstract
We propose novel methods for machine learning of structured output spaces. Specifically, we consider outputs which are graphs with vertices that have a natural order. We consider the usual adjacency matrix representation of graphs, as well as two other representations for such a graph: (a) decomposing the graph into a set of paths, (b) converting the graph into a single sequence of nodes with labeled edges. For each of the three representations, we propose an encoding and decoding scheme. We also propose an evaluation measure for comparing two graphs.

ei

PDF [BibTex]

PDF [BibTex]


no image
Nonnegative Matrix Approximation: Algorithms and Applications

Sra, S., Dhillon, I.

Univ. of Texas, Austin, May 2006 (techreport)

ei

[BibTex]

[BibTex]


no image
Advances in Neural Information Processing Systems 18: Proceedings of the 2005 Conference

Weiss, Y., Schölkopf, B., Platt, J.

Proceedings of the 19th Annual Conference on Neural Information Processing Systems (NIPS 2005), pages: 1676, MIT Press, Cambridge, MA, USA, 19th Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (proceedings)

Abstract
The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December 2005 meeting, held in Vancouver.

ei

Web [BibTex]

Web [BibTex]


no image
An Automated Combination of Sequence Motif Kernels for Predicting Protein Subcellular Localization

Zien, A., Ong, C.

(146), Max Planck Institute for Biological Cybernetics, Tübingen, April 2006 (techreport)

Abstract
Protein subcellular localization is a crucial ingredient to many important inferences about cellular processes, including prediction of protein function and protein interactions. While many predictive computational tools have been proposed, they tend to have complicated architectures and require many design decisions from the developer. We propose an elegant and fully automated approach to building a prediction system for protein subcellular localization. We propose a new class of protein sequence kernels which considers all motifs including motifs with gaps. This class of kernels allows the inclusion of pairwise amino acid distances into their computation. We further propose a multiclass support vector machine method which directly solves protein subcellular localization without resorting to the common approach of splitting the problem into several binary classification problems. To automatically search over families of possible amino acid motifs, we generalize our method to optimize over multiple kernels at the same time. We compare our automated approach to four other predictors on three different datasets.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Training a Support Vector Machine in the Primal

Chapelle, O.

(147), Max Planck Institute for Biological Cybernetics, Tübingen, April 2006, The version in the "Large Scale Kernel Machines" book is more up to date. (techreport)

Abstract
Most literature on Support Vector Machines (SVMs) concentrate on the dual optimization problem. In this paper, we would like to point out that the primal problem can also be solved efficiently, both for linear and non-linear SVMs, and there is no reason for ignoring it. Moreover, from the primal point of view, new families of algorithms for large scale SVM training can be investigated.

ei

PDF [BibTex]

PDF [BibTex]


no image
Cross-Validation Optimization for Structured Hessian Kernel Methods

Seeger, M., Chapelle, O.

Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, February 2006 (techreport)

Abstract
We address the problem of learning hyperparameters in kernel methods for which the Hessian of the objective is structured. We propose an approximation to the cross-validation log likelihood whose gradient can be computed analytically, solving the hyperparameter learning problem efficiently through nonlinear optimization. Crucially, our learning method is based entirely on matrix-vector multiplication primitives with the kernel matrices and their derivatives, allowing straightforward specialization to new kernels or to large datasets. When applied to the problem of multi-way classification, our method scales linearly in the number of classes and gives rise to state-of-the-art results on a remote imaging task.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Machine Learning Challenges: evaluating predictive uncertainty, visual object classification and recognising textual entailment

Quinonero Candela, J., Dagan, I., Magnini, B., Lauria, F.

Proceedings of the First Pascal Machine Learning Challenges Workshop on Machine Learning Challenges, Evaluating Predictive Uncertainty, Visual Object Classification and Recognizing Textual Entailment (MLCW 2005), pages: 462, Lecture Notes in Computer Science, Springer, Heidelberg, Germany, First Pascal Machine Learning Challenges Workshop (MLCW), 2006 (proceedings)

Abstract
This book constitutes the thoroughly refereed post-proceedings of the First PASCAL (pattern analysis, statistical modelling and computational learning) Machine Learning Challenges Workshop, MLCW 2005, held in Southampton, UK in April 2005. The 25 revised full papers presented were carefully selected during two rounds of reviewing and improvement from about 50 submissions. The papers reflect the concepts of three challenges dealt with in the workshop: finding an assessment base on the uncertainty of predictions using classical statistics, Bayesian inference, and statistical learning theory; the second challenge was to recognize objects from a number of visual object classes in realistic scenes; the third challenge of recognizing textual entailment addresses semantic analysis of language to form a generic framework for applied semantic inference in text understanding.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Thumb xl screen shot 2012 06 06 at 11.31.38 am
Implicit Wiener Series, Part II: Regularised estimation

Gehler, P., Franz, M.

(148), Max Planck Institute, 2006 (techreport)

ei ps

pdf [BibTex]

pdf [BibTex]


no image
Statistical Learning of LQG controllers

Theodorou, E.

Technical Report-2006-1, Computational Action and Vision Lab University of Minnesota, 2006, clmc (techreport)

am

PDF [BibTex]

PDF [BibTex]


Thumb xl evatr
HumanEva: Synchronized video and motion capture dataset for evaluation of articulated human motion

Sigal, L., Black, M. J.

(CS-06-08), Brown University, Department of Computer Science, 2006 (techreport)

ps

pdf abstract [BibTex]

pdf abstract [BibTex]

1999


no image
Estimating the support of a high-dimensional distribution

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.

(MSR-TR-99-87), Microsoft Research, 1999 (techreport)

ei

Web [BibTex]

1999


Web [BibTex]


no image
Generalization Bounds via Eigenvalues of the Gram matrix

Schölkopf, B., Shawe-Taylor, J., Smola, A., Williamson, R.

(99-035), NeuroCOLT, 1999 (techreport)

ei

[BibTex]

[BibTex]


no image
Sparse kernel feature analysis

Smola, A., Mangasarian, O., Schölkopf, B.

(99-04), Data Mining Institute, 1999, 24th Annual Conference of Gesellschaft f{\"u}r Klassifikation, University of Passau (techreport)

ei

PostScript [BibTex]

PostScript [BibTex]