Header logo is


2017


no image
Improving performance of linear field generation with multi-coil setup by optimizing coils position

Aghaeifar, A., Loktyushin, A., Eschelbach, M., Scheffler, K.

Magnetic Resonance Materials in Physics, Biology and Medicine, 30(Supplement 1):S259, 34th Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), October 2017 (poster)

ei

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]


no image
Editorial for the Special Issue on Microdevices and Microsystems for Cell Manipulation

Hu, W., Ohta, A. T.

8, Multidisciplinary Digital Publishing Institute, September 2017 (misc)

pi

DOI [BibTex]

DOI [BibTex]


Thumb xl provisional
Parameterized Model of 2D Articulated Human Shape

Black, M. J., Freifeld, O., Weiss, A., Loper, M., Guan, P.

September 2017, U.S.~Patent 9,761,060 (misc)

Abstract
Disclosed are computer-readable devices, systems and methods for generating a model of a clothed body. The method includes generating a model of an unclothed human body, the model capturing a shape or a pose of the unclothed human body, determining two-dimensional contours associated with the model, and computing deformations by aligning a contour of a clothed human body with a contour of the unclothed human body. Based on the two-dimensional contours and the deformations, the method includes generating a first two-dimensional model of the unclothed human body, the first two-dimensional model factoring the deformations of the unclothed human body into one or more of a shape variation component, a viewpoint change, and a pose variation and learning an eigen-clothing model using principal component analysis applied to the deformations, wherein the eigen-clothing model classifies different types of clothing, to yield a second two-dimensional model of a clothed human body.

ps

Google Patents [BibTex]


Thumb xl full outfit
Physical and Behavioral Factors Improve Robot Hug Quality

Block, A. E., Kuchenbecker, K. J.

Workshop Paper (2 pages) presented at the RO-MAN Workshop on Social Interaction and Multimodal Expression for Socially Intelligent Robots, Lisbon, Portugal, August 2017 (misc)

Abstract
A hug is one of the most basic ways humans can express affection. As hugs are so common, a natural progression of robot development is to have robots one day hug humans as seamlessly as these intimate human-human interactions occur. This project’s purpose is to evaluate human responses to different robot physical characteristics and hugging behaviors. Specifically, we aim to test the hypothesis that a warm, soft, touch-sensitive PR2 humanoid robot can provide humans with satisfying hugs by matching both their hugging pressure and their hugging duration. Thirty participants experienced and evaluated twelve hugs with the robot, divided into three randomly ordered trials that focused on physical robot char- acteristics and nine randomly ordered trials with varied hug pressure and duration. We found that people prefer soft, warm hugs over hard, cold hugs. Furthermore, users prefer hugs that physically squeeze them and release immediately when they are ready for the hug to end.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl bodytalk
Crowdshaping Realistic 3D Avatars with Words

Streuber, S., Ramirez, M. Q., Black, M., Zuffi, S., O’Toole, A., Hill, M. Q., Hahn, C. A.

August 2017, Application PCT/EP2017/051954 (misc)

Abstract
A method for generating a body shape, comprising the steps: - receiving one or more linguistic descriptors related to the body shape; - retrieving an association between the one or more linguistic descriptors and a body shape; and - generating the body shape, based on the association.

ps

Google Patents [BibTex]

Google Patents [BibTex]


no image
Physically Interactive Exercise Games with a Baxter Robot

Fitter, N. T., Kuchenbecker, K. J.

Hands-on demonstration presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl dapepatent
System and method for simulating realistic clothing

Black, M. J., Guan, P.

June 2017, U.S.~Patent 9,679,409 B2 (misc)

Abstract
Systems, methods, and computer-readable storage media for simulating realistic clothing. The system generates a clothing deformation model for a clothing type, wherein the clothing deformation model factors a change of clothing shape due to rigid limb rotation, pose-independent body shape, and pose-dependent deformations. Next, the system generates a custom-shaped garment for a given body by mapping, via the clothing deformation model, body shape parameters to clothing shape parameters. The system then automatically dresses the given body with the custom- shaped garment.

ps

Google Patents pdf [BibTex]


no image
Proton Pack: Visuo-Haptic Surface Data Recording

Burka, A., Kuchenbecker, K. J.

Hands-on demonstration presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Teaching a Robot to Collaborate with a Human Via Haptic Teleoperation

Hu, S., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl full outfit
How Should Robots Hug?

Block, A. E., Kuchenbecker, K. J.

Work-in-progress paper (2 pages) presented at the IEEE World Haptics Conference (WHC), Munich, Germany, June 2017 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
An Interactive Augmented-Reality Video Training Platform for the da Vinci Surgical System

Carlson, J., Kuchenbecker, K. J.

Workshop paper (3 pages) presented at the ICRA Workshop on C4 Surgical Robots, Singapore, May 2017 (misc)

Abstract
Teleoperated surgical robots such as the Intuitive da Vinci Surgical System facilitate minimally invasive surgeries, which decrease risk to patients. However, these systems can be difficult to learn, and existing training curricula on surgical simulators do not offer students the realistic experience of a full operation. This paper presents an augmented-reality video training platform for the da Vinci that will allow trainees to rehearse any surgery recorded by an expert. While the trainee operates a da Vinci in free space, they see their own instruments overlaid on the expert video. Tools are identified in the source videos via color segmentation and kernelized correlation filter tracking, and their depth is calculated from the da Vinci’s stereoscopic video feed. The user tries to follow the expert’s movements, and if any of their tools venture too far away, the system provides instantaneous visual feedback and pauses to allow the user to correct their motion. The trainee can also rewind the expert video by bringing either da Vinci tool very close to the camera. This combined and augmented video provides the user with an immersive and interactive training experience.

hi

[BibTex]

[BibTex]


no image
Estimating B0 inhomogeneities with projection FID navigator readouts

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Image Quality Improvement by Applying Retrospective Motion Correction on Quantitative Susceptibility Mapping and R2*

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Hand-Clapping Games with a Baxter Robot

Fitter, N. T., Kuchenbecker, K. J.

Hands-on demonstration presented at ACM/IEEE International Conference on Human-Robot Interaction (HRI), Vienna, Austria, March 2017 (misc)

Abstract
Robots that work alongside humans might be more effective if they could forge a strong social bond with their human partners. Hand-clapping games and other forms of rhythmic social-physical interaction may foster human-robot teamwork, but the design of such interactions has scarcely been explored. At the HRI 2017 conference, we will showcase several such interactions taken from our recent work with the Rethink Robotics Baxter Research Robot, including tempo-matching, Simon says, and Pat-a-cake-like games. We believe conference attendees will be both entertained and intrigued by this novel demonstration of social-physical HRI.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Automatic OSATS Rating of Trainee Skill at a Pediatric Laparoscopic Suturing Task

Oquendo, Y. A., Riddle, E. W., Hiller, D., Blinman, T. A., Kuchenbecker, K. J.

Surgical Endoscopy, 31(Supplement 1):S28, Extended abstract presented as a podium presentation at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Springer, Houston, USA, March 2017 (misc)

Abstract
Introduction: Minimally invasive surgery has revolutionized surgical practice, but challenges remain. Trainees must acquire complex technical skills while minimizing patient risk, and surgeons must maintain their skills for rare procedures. These challenges are magnified in pediatric surgery due to the smaller spaces, finer tissue, and relative dearth of both inanimate and virtual simulators. To build technical expertise, trainees need opportunities for deliberate practice with specific performance feedback, which is typically provided via tedious human grading. This study aimed to validate a novel motion-tracking system and machine learning algorithm for automatically evaluating trainee performance on a pediatric laparoscopic suturing task using a 1–5 OSATS Overall Skill rating. Methods: Subjects (n=14) ranging from medical students to fellows per- formed one or two trials of an intracorporeal suturing task in a custom pediatric laparoscopy training box (Fig. 1) after watching a video of ideal performance by an expert. The position and orientation of the tools and endoscope were recorded over time using Ascension trakSTAR magnetic motion-tracking sensors, and both instrument grasp angles were recorded over time using flex sensors on the handles. The 27 trials were video-recorded and scored on the OSATS scale by a senior fellow; ratings ranged from 1 to 4. The raw motion data from each trial was processed to calculate over 200 preliminary motion parameters. Regularized least-squares regression (LASSO) was used to identify the most predictive parameters for inclusion in a regression tree. Model performance was evaluated by leave-one-subject-out cross validation, wherein the automatic scores given to each subject’s trials (by a model trained on all other data) are compared to the corresponding human rater scores. Results: The best-performing LASSO algorithm identified 14 predictive parameters for inclusion in the regression tree, including completion time, linear path length, angular path length, angular acceleration, grasp velocity, and grasp acceleration. The final model’s raw output showed a strong positive correlation of 0.87 with the reviewer-generated scores, and rounding the output to the nearest integer yielded a leave-one-subject-out cross-validation accuracy of 77.8%. Results are summarized in the confusion matrix (Table 1). Conclusions: Our novel motion-tracking system and regression model automatically gave previously unseen trials overall skill scores that closely match scores from an expert human rater. With additional data and further development, this system may enable creation of a motion-based training platform for pediatric laparoscopic surgery and could yield insights into the fundamental components of surgical skill.

hi

[BibTex]

[BibTex]


no image
How Much Haptic Surface Data is Enough?

Burka, A., Kuchenbecker, K. J.

Workshop paper (5 pages) presented at the AAAI Spring Symposium on Interactive Multi-Sensory Object Perception for Embodied Agents, Stanford, USA, March 2017 (misc)

Abstract
The Proton Pack is a portable visuo-haptic surface interaction recording device that will be used to collect a vast multimodal dataset, intended for robots to use as part of an approach to understanding the world around them. In order to collect a useful dataset, we want to pick a suitable interaction duration for each surface, noting the tradeoff between data collection resources and completeness of data. One interesting approach frames the data collection process as an online learning problem, building an incremental surface model and using that model to decide when there is enough data. Here we examine how to do such online surface modeling and when to stop collecting data, using kinetic friction as a first domain in which to apply online modeling.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Thumb xl screen shot 2018 05 04 at 11.44.04
Enhancing Human-Computer Interaction via Electrovibration

Emgin, S. E., Sadia, B., Vardar, Y., Basdogan, C.

Demo in IEEE World Haptics, 2017 (misc)

Abstract
We present a compact tablet that displays electrostatic haptic feedback to the user. We track user?s finger position via an infrared frame and then display haptic feedback through a capacitive touch screen based on her/his position. In order to demonstrate practical utility of the proposed system, the following applications have been developed: (1) Online Shopping application allows users to be able to feel the cord density of two different fabrics. (2) Education application asks user to add two numbers by dragging one number onto another in order to match the sum. After selecting the first number, haptic feedback assists user to select the right pair. (3) Gaming/Entertainment application presents users a bike riding experience on three different road textures -smooth, bumpy, and sandy. (4) User Interface application in which users are asked to drag two visually identical folders. While dragging, users are able to differentiate the amount of data in each folder based on haptic resistance.

hi

[BibTex]

[BibTex]


Thumb xl screen shot 2018 05 04 at 11.42.00
Reproduction of textures based on electrovibration

Fiedler, T., Vardar, Y., Strese, M., Steinbach, E., Basdogan, C.

Demo in IEEE World Haptics, 2017 (misc)

Abstract
This demonstration presents an approach to represent textures based on electovibration. We collect acceleration data which occurs while sliding a tool tip over a real texture surface. The prerecorded data was collected by a ADXL335 accelerometer, which is mounted on a FALCON device moving on the x-axis with a regulated velocity. In order to replicate the same acceleration with electrovibration, we found two problems. The frequency of one sine wave shifts to the double frequency. This effect originates from the electrostatic force between the finger pad and the tactile display as proposed by Kactmarek et Al. [1]. Taking the square root of the input signal corrects the effect. This was also earlier proposed by [1, 2, 3] However, if not only one but multiple sine waves are displayed interference occur and acceleration signals from real textures may not feel perceptually realistic. We propose to display only the dominant frequencies from a real texture signal. Peak frequencies are determined within the respect of the JND of 11 percent found by earlier literature. A new sine wave signal with the dominant frequencies is created. In the demo, we will let the attendees feel the differences between prerecorded and artificially created textures.

hi

[BibTex]

[BibTex]


Thumb xl paraview preview
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

ESI Systems Neuroscience Conference (ESI-SyNC 2017): Principles of Structural and Functional Connectivity, 2017 (poster)

ei

[BibTex]

[BibTex]

2013


no image
Jointonation: Robotization of the Human Body by Vibrotactile Feedback

Kurihara, Y., Hachisu, T., Kuchenbecker, K. J., Kajimoto, H.

Emerging Technologies Demonstration with Talk at ACM SIGGRAPH Asia, Hong Kong, November 2013, Hands-on demonstration given by Kurihara, Takei, and Nakai. Best Demonstration Award as voted by the Program Committee (misc)

hi

[BibTex]

2013


[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent App. 14/016,651 (misc)

pi

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent App. 14/016,683 (misc)

pi

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent 8,524,092 (misc)

pi

[BibTex]

[BibTex]


no image
Data-Driven Modeling and Rendering of Isotropic Textures

Culbertson, H., McDonald, C. G., Goodman, B. E., Kuchenbecker, K. J.

Hands-on demonstration presented at IEEE World Haptics Conference, Daejeon, South Korea, April 2013, Best Demonstration Award (by audience vote) (misc)

hi

[BibTex]

[BibTex]


no image
Adding Haptics to Robotic Surgery

J. Kuchenbecker, K., Brzezinski, A., D. Gomez, E., Gosselin, M., Hui, J., Koch, E., Koehn, J., McMahan, W., Mahajan, K., Nappo, J., Shah, N.

Learning Center Station at SAGES (Society of American Gastrointestinal and Endoscopic Surgeons) Annual Meeting, Baltimore, Maryland, USA, April 2013 (misc)

hi

[BibTex]

[BibTex]


no image
Dry adhesives and methods of making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

March 2013, US Patent App. 13/845,702 (misc)

pi

[BibTex]

[BibTex]


no image
Coupling between spiking activity and beta band spatio-temporal patterns in the macaque PFC

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

43rd Annual Meeting of the Society for Neuroscience (Neuroscience), 2013 (poster)

ei

[BibTex]

[BibTex]


no image
Gaussian Process Vine Copulas for Multivariate Dependence

Lopez-Paz, D., Hernandez-Lobato, J., Ghahramani, Z.

International Conference on Machine Learning (ICML), 2013 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K., Balduzzi, D., Schölkopf, B.

30th International Conference on Machine Learning (ICML2013), 2013 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Analyzing locking of spikes to spatio-temporal patterns in the macaque prefrontal cortex

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

Bernstein Conference, 2013 (poster)

ei

DOI [BibTex]

DOI [BibTex]


no image
One-class Support Measure Machines for Group Anomaly Detection

Muandet, K., Schölkopf, B.

29th Conference on Uncertainty in Artificial Intelligence (UAI), 2013 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

Neural Information Processing Systems (NIPS), 2013 (poster)

ei pn

PDF [BibTex]

PDF [BibTex]


no image
Characterization of different types of sharp-wave ripple signatures in the CA1 of the macaque hippocampus

Ramirez-Villegas, J., Logothetis, N., Besserve, M.

4th German Neurophysiology PhD Meeting Networks, 2013 (poster)

ei

Web [BibTex]

Web [BibTex]

2008


no image
Variational Bayesian Model Selection in Linear Gaussian State-Space based Models

Chiappa, S.

International Workshop on Flexible Modelling: Smoothing and Robustness (FMSR 2008), 2008, pages: 1, November 2008 (poster)

ei

Web [BibTex]

2008


Web [BibTex]


no image
Towards the neural basis of the flash-lag effect

Ecker, A., Berens, P., Hoenselaar, A., Subramaniyan, M., Tolias, A., Bethge, M.

International Workshop on Aspects of Adaptive Cortex Dynamics, 2008, pages: 1, September 2008 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Policy Learning: A Unified Perspective With Applications In Robotics

Peters, J., Kober, J., Nguyen-Tuong, D.

8th European Workshop on Reinforcement Learning for Robotics (EWRL 2008), 8, pages: 10, July 2008 (poster)

Abstract
Policy Learning approaches are among the best suited methods for high-dimensional, continuous control systems such as anthropomorphic robot arms and humanoid robots. In this paper, we show two contributions: firstly, we show a unified perspective which allows us to derive several policy learning al- gorithms from a common point of view, i.e, policy gradient algorithms, natural- gradient algorithms and EM-like policy learning. Secondly, we present several applications to both robot motor primitive learning as well as to robot control in task space. Results both from simulation and several different real robots are shown.

ei

PDF [BibTex]

PDF [BibTex]


no image
Reinforcement Learning of Perceptual Coupling for Motor Primitives

Kober, J., Peters, J.

8th European Workshop on Reinforcement Learning for Robotics (EWRL 2008), 8, pages: 16, July 2008 (poster)

Abstract
Reinforcement learning is a natural choice for the learning of complex motor tasks by reward-related self-improvement. As the space of movements is high-dimensional and continuous, a policy parametrization is needed which can be used in this context. Traditional motor primitive approaches deal largely with open-loop policies which can only deal with small perturbations. In this paper, we present a new type of motor primitive policies which serve as closed-loop policies together with an appropriate learning algorithm. Our new motor primitives are an augmented version version of the dynamic systems motor primitives that incorporates perceptual coupling to external variables. We show that these motor primitives can perform complex tasks such a Ball-in-a-Cup or Kendama task even with large variances in the initial conditions where a human would hardly be able to learn this task. We initialize the open-loop policies by imitation learning and the perceptual coupling with a handcrafted solution. We first improve the open-loop policies and subsequently the perceptual coupling using a novel reinforcement learning method which is particularly well-suited for motor primitives.

ei

PDF [BibTex]

PDF [BibTex]


no image
Flexible Models for Population Spike Trains

Bethge, M., Macke, J., Berens, P., Ecker, A., Tolias, A.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 52, June 2008 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Pairwise Correlations and Multineuronal Firing Patterns in the Primary Visual Cortex of the Awake, Behaving Macaque

Berens, P., Ecker, A., Subramaniyan, M., Macke, J., Hauck, P., Bethge, M., Tolias, A.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 48, June 2008 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Visual saliency re-visited: Center-surround patterns emerge as optimal predictors for human fixation targets

Wichmann, F., Kienzle, W., Schölkopf, B., Franz, M.

Journal of Vision, 8(6):635, 8th Annual Meeting of the Vision Sciences Society (VSS), June 2008 (poster)

Abstract
Humans perceives the world by directing the center of gaze from one location to another via rapid eye movements, called saccades. In the period between saccades the direction of gaze is held fixed for a few hundred milliseconds (fixations). It is primarily during fixations that information enters the visual system. Remarkably, however, after only a few fixations we perceive a coherent, high-resolution scene despite the visual acuity of the eye quickly decreasing away from the center of gaze: This suggests an effective strategy for selecting saccade targets. Top-down effects, such as the observer's task, thoughts, or intentions have an effect on saccadic selection. Equally well known is that bottom-up effects-local image structure-influence saccade targeting regardless of top-down effects. However, the question of what the most salient visual features are is still under debate. Here we model the relationship between spatial intensity patterns in natural images and the response of the saccadic system using tools from machine learning. This allows us to identify the most salient image patterns that guide the bottom-up component of the saccadic selection system, which we refer to as perceptive fields. We show that center-surround patterns emerge as the optimal solution to the problem of predicting saccade targets. Using a novel nonlinear system identification technique we reduce our learned classifier to a one-layer feed-forward network which is surprisingly simple compared to previously suggested models assuming more complex computations such as multi-scale processing, oriented filters and lateral inhibition. Nevertheless, our model is equally predictive and generalizes better to novel image sets. Furthermore, our findings are consistent with neurophysiological hardware in the superior colliculus. Bottom-up visual saliency may thus not be computed cortically as has been thought previously.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Analysis of Pattern Recognition Methods in Classifying Bold Signals in Monkeys at 7-Tesla

Ku, S., Gretton, A., Macke, J., Tolias, A., Logothetis, N.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 67, June 2008 (poster)

Abstract
Pattern recognition methods have shown that fMRI data can reveal significant information about brain activity. For example, in the debate of how object-categories are represented in the brain, multivariate analysis has been used to provide evidence of distributed encoding schemes. Many follow-up studies have employed different methods to analyze human fMRI data with varying degrees of success. In this study we compare four popular pattern recognition methods: correlation analysis, support-vector machines (SVM), linear discriminant analysis and Gaussian naïve Bayes (GNB), using data collected at high field (7T) with higher resolution than usual fMRI studies. We investigate prediction performance on single trials and for averages across varying numbers of stimulus presentations. The performance of the various algorithms depends on the nature of the brain activity being categorized: for several tasks, many of the methods work well, whereas for others, no methods perform above chance level. An important factor in overall classification performance is careful preprocessing of the data, including dimensionality reduction, voxel selection, and outlier elimination.

ei

[BibTex]

[BibTex]


no image
The role of stimulus correlations for population decoding in the retina

Schwartz, G., Macke, J., Berry, M.

Computational and Systems Neuroscience 2008 (COSYNE 2008), 5, pages: 172, March 2008 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
The Touch Thimble

Kuchenbecker, K. J., Ferguson, D., Kutzer, M., Moses, M., Okamura, A. M.

Hands-on demonstration presented at IEEE Haptics Symposium, Reno, Nevada, USA, March 2008 (misc)

hi

[BibTex]

[BibTex]

2007


no image
MR-Based PET Attenuation Correction: Method and Validation

Hofmann, M., Steinke, F., Scheel, V., Charpiat, G., Brady, M., Schölkopf, B., Pichler, B.

2007 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC 2007), 2007(M16-6):1-2, November 2007 (poster)

Abstract
PET/MR combines the high soft tissue contrast of Magnetic Resonance Imaging (MRI) and the functional information of Positron Emission Tomography (PET). For quantitative PET information, correction of tissue photon attenuation is mandatory. Usually in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating source, or from the CT scan in case of combined PET/CT. In the case of a PET/MR scanner, there is insufficient space for the rotating source and ideally one would want to calculate the attenuation map from the MR image instead. Since MR images provide information about proton density of the different tissue types, it is not trivial to use this data for PET attenuation correction. We present a method for predicting the PET attenuation map from a given the MR image, using a combination of atlas-registration and recognition of local patterns. Using "leave one out cross validation" we show on a database of 16 MR-CT image pairs that our method reliably allows estimating the CT image from the MR image. Subsequently, as in PET/CT, the PET attenuation map can be predicted from the CT image. On an additional dataset of MR/CT/PET triplets we quantitatively validate that our approach allows PET quantification with an error that is smaller than what would be clinically significant. We demonstrate our approach on T1-weighted human brain scans. However, the presented methods are more general and current research focuses on applying the established methods to human whole body PET/MRI applications.

ei

PDF PDF [BibTex]

2007


PDF PDF [BibTex]


no image
Estimating receptive fields without spike-triggering

Macke, J., Zeck, G., Bethge, M.

37th annual Meeting of the Society for Neuroscience (Neuroscience 2007), 37(768.1):1, November 2007 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Evaluation of Deformable Registration Methods for MR-CT Atlas Alignment

Scheel, V., Hofmann, M., Rehfeld, N., Judenhofer, M., Claussen, C., Pichler, B.

2007 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC 2007), 2007(M13-121):1, November 2007 (poster)

Abstract
Deformable registration methods are essential for multimodality imaging. Many different methods exist but due to the complexity of the deformed images a direct comparison of the methods is difficult. One particular application that requires high accuracy registration of MR-CT images is atlas-based attenuation correction for PET/MR. We compare four deformable registration algorithms for 3D image data included in the Open Source "National Library of Medicine Insight Segmentation and Registration Toolkit" (ITK). An interactive landmark based registration using MiraView (Siemens) has been used as gold standard. The automatic algorithms provided by ITK are based on the metrics Mattes mutual information as well as on normalized mutual information. The transformations are calculated by interpolating over a uniform B-Spline grid laying over the image to be warped. The algorithms were tested on head images from 10 subjects. We implemented a measure which segments head interior bone and air based on the CT images and l ow intensity classes of corresponding MRI images. The segmentation of bone is performed by individually calculating the lowest Hounsfield unit threshold for each CT image. The compromise is made by quantifying the number of overlapping voxels of the remaining structures. We show that the algorithms provided by ITK achieve similar or better accuracy than the time-consuming interactive landmark based registration. Thus, ITK provides an ideal platform to generate accurately fused datasets from different modalities, required for example for building training datasets for Atlas-based attenuation correction.

ei

PDF [BibTex]

PDF [BibTex]