Header logo is


2017


no image
Improving performance of linear field generation with multi-coil setup by optimizing coils position

Aghaeifar, A., Loktyushin, A., Eschelbach, M., Scheffler, K.

Magnetic Resonance Materials in Physics, Biology and Medicine, 30(Supplement 1):S259, 34th Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), October 2017 (poster)

ei

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]


no image
Estimating B0 inhomogeneities with projection FID navigator readouts

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Image Quality Improvement by Applying Retrospective Motion Correction on Quantitative Susceptibility Mapping and R2*

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl paraview preview
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

ESI Systems Neuroscience Conference (ESI-SyNC 2017): Principles of Structural and Functional Connectivity, 2017 (poster)

ei

[BibTex]

[BibTex]

1995


no image
Image segmentation from motion: just the loss of high-spatial-frequency content ?

Wichmann, F., Henning, G.

Perception, 24, pages: S19, 1995 (poster)

Abstract
The human contrast sensitivity function (CSF) is bandpass for stimuli of low temporal frequency but, for moving stimuli, results in a low-pass CSF with large high spatial-frequency losses. Thus the high spatial-frequency content of images moving on the retina cannot be seen; motion perception could be facilitated by, or even be based on, the selective loss of high spatial-frequency content. 2-AFC image segmentation experiments were conducted with segmentation based on motion or on form. In the latter condition, the form difference mirrored that produced by moving stimuli. This was accomplished by generating stimulus elements which were spectrally either broadband or low-pass. For the motion used, the spectral difference between static broadband and static low-pass elements matched the spectral difference between moving and static broadband elements. On the hypothesis that segmentation from motion is based on the detection of regions devoid of high spatial-frequencies, both tasks should be similarly difficult for human observers. However, neither image segmentation (nor, incidentally, motion detection) was sensitive to the high spatial-frequency content of the stimuli. Thus changes in perceptual form produced by moving stimuli appear not to be used as a cue for image segmentation.

ei

[BibTex]