Header logo is


2020


Learning to Predict Perceptual Distributions of Haptic Adjectives
Learning to Predict Perceptual Distributions of Haptic Adjectives

Richardson, B. A., Kuchenbecker, K. J.

Frontiers in Neurorobotics, 13(116):1-16, Febuary 2020 (article)

Abstract
When humans touch an object with their fingertips, they can immediately describe its tactile properties using haptic adjectives, such as hardness and roughness; however, human perception is subjective and noisy, with significant variation across individuals and interactions. Recent research has worked to provide robots with similar haptic intelligence but was focused on identifying binary haptic adjectives, ignoring both attribute intensity and perceptual variability. Combining ordinal haptic adjective labels gathered from human subjects for a set of 60 objects with features automatically extracted from raw multi-modal tactile data collected by a robot repeatedly touching the same objects, we designed a machine-learning method that incorporates partial knowledge of the distribution of object labels into training; then, from a single interaction, it predicts a probability distribution over the set of ordinal labels. In addition to analyzing the collected labels (10 basic haptic adjectives) and demonstrating the quality of our method's predictions, we hold out specific features to determine the influence of individual sensor modalities on the predictive performance for each adjective. Our results demonstrate the feasibility of modeling both the intensity and the variation of haptic perception, two crucial yet previously neglected components of human haptic perception.

hi

DOI [BibTex]

2020


DOI [BibTex]


Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations
Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations

Rueegg, N., Lassner, C., Black, M. J., Schindler, K.

In Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), Febuary 2020 (inproceedings)

Abstract
The goal of many computer vision systems is to transform image pixels into 3D representations. Recent popular models use neural networks to regress directly from pixels to 3D object parameters. Such an approach works well when supervision is available, but in problems like human pose and shape estimation, it is difficult to obtain natural images with 3D ground truth. To go one step further, we propose a new architecture that facilitates unsupervised, or lightly supervised, learning. The idea is to break the problem into a series of transformations between increasingly abstract representations. Each step involves a cycle designed to be learnable without annotated training data, and the chain of cycles delivers the final solution. Specifically, we use 2D body part segments as an intermediate representation that contains enough information to be lifted to 3D, and at the same time is simple enough to be learned in an unsupervised way. We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images. We also explore varying amounts of paired data and show that cycling greatly alleviates the need for paired data. While we present results for modeling humans, our formulation is general and can be applied to other vision problems.

ps

pdf [BibTex]

pdf [BibTex]


no image
Sliding Mode Control with Gaussian Process Regression for Underwater Robots

Lima, G. S., Trimpe, S., Bessa, W. M.

Journal of Intelligent & Robotic Systems, January 2020 (article)

ics

DOI [BibTex]

DOI [BibTex]


Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks
Hierarchical Event-triggered Learning for Cyclically Excited Systems with Application to Wireless Sensor Networks

Beuchert, J., Solowjow, F., Raisch, J., Trimpe, S., Seel, T.

IEEE Control Systems Letters, 4(1):103-108, January 2020 (article)

ics

arXiv PDF DOI Project Page [BibTex]

arXiv PDF DOI Project Page [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), January 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

ps

Paper Publisher Version poster link (url) DOI [BibTex]


Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems
Control-guided Communication: Efficient Resource Arbitration and Allocation in Multi-hop Wireless Control Systems

Baumann, D., Mager, F., Zimmerling, M., Trimpe, S.

IEEE Control Systems Letters, 4(1):127-132, January 2020 (article)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


no image
More Powerful Selective Kernel Tests for Feature Selection

Lim, J. N., Yamada, M., Jitkrittum, W., Terada, Y., Matsui, S., Shimodaira, H.

Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), 2020 (conference) To be published

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Self-supervised motion deblurring

Liu, P., Janai, J., Pollefeys, M., Sattler, T., Geiger, A.

IEEE Robotics and Automation Letters, 2020 (article)

avg

[BibTex]

[BibTex]


no image
Effect of the soft layer thickness of magnetization reversal process of exchange-spring nanomagnet patterns

Son, K., Schütz, G., Goering, E.

{Current Applied Physics}, 20(4):477-483, Elsevier B.V., Amsterdam, 2020 (article)

mms

DOI [BibTex]


no image
Tuning the magnetic properties of permalloy-based magnetoplasmonic crystals for sensor applications

Murzin, D. V., Belyaev, V. K., Groß, F., Gräfe, J., Rivas, M., Rodionova, V. V.

{Japanese Journal of Applied Physics}, 59(SE), IOP Publishing Ltd, Bristol, England, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Element-resolved study of the evolution of magnetic response in FexN compounds

Chen, Y., Gölden, D., Dirba, I., Huang, M., Gutfleisch, O., Nagel, P., Merz, M., Schuppler, S., Schütz, G., Alff, L., Goering, E.

{Journal of Magnetism and Magnetic Materials}, 498, NH, Elsevier, Amsterdam, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms
Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms

Dong, X., Sitti, M.

The International Journal of Robotics Research, 2020 (article)

Abstract
Magnetically actuated mobile microrobots can access distant, enclosed, and small spaces, such as inside microfluidic channels and the human body, making them appealing for minimally invasive tasks. Despite their simplicity when scaling down, creating collective microrobots that can work closely and cooperatively, as well as reconfigure their formations for different tasks, would significantly enhance their capabilities such as manipulation of objects. However, a challenge of realizing such cooperative magnetic microrobots is to program and reconfigure their formations and collective motions with under-actuated control signals. This article presents a method of controlling 2D static and time-varying formations among collective self-repelling ferromagnetic microrobots (100 μm to 350 μm in diameter, up to 260 in number) by spatially and temporally programming an external magnetic potential energy distribution at the air–water interface or on solid surfaces. A general design method is introduced to program external magnetic potential energy using ferromagnets. A predictive model of the collective system is also presented to predict the formation and guide the design procedure. With the proposed method, versatile complex static formations are experimentally demonstrated and the programmability and scaling effects of formations are analyzed. We also demonstrate the collective mobility of these magnetic microrobots by controlling them to exhibit bio-inspired collective behaviors such as aggregation, directional motion with arbitrary swarm headings, and rotational swarming motion. Finally, the functions of the produced microrobotic swarm are demonstrated by controlling them to navigate through cluttered environments and complete reconfigurable cooperative manipulation tasks.

pi

DOI [BibTex]


no image
The role of temperature and drive current in skyrmion dynamics

Litzius, K., Leliaert, J., Bassirian, P., Rodrigues, D., Kromin, S., Lemesh, I., Zazvorka, J., Lee, K., Mulkers, J., Kerber, N., Heinze, D., Keil, N., Reeve, R. M., Weigand, M., Van Waeyenberge, B., Schütz, G., Everschor-Sitte, K., Beach, G. S. D., Kläui, M.

{Nature Electronics}, 3(1):30-36, Springer Nature, London, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Magnetic flux penetration into micron-sized superconductor/ferromagnet bilayers

Simmendinger, J., Weigand, M., Schütz, G., Albrecht, J.

{Superconductor Science and Technology}, 33(2), IOP Pub., Bristol, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
Analytical classical density functionals from an equation learning network

Lin, S., Martius, G., Oettel, M.

The Journal of Chemical Physics, 152(2):021102, 2020, arXiv preprint \url{https://arxiv.org/abs/1910.12752} (article)

al

Preprint_PDF DOI [BibTex]

Preprint_PDF DOI [BibTex]


no image
ACTrain: Ein KI-basiertes Aufmerksamkeitstraining für die Wissensarbeit [ACTrain: An AI-based attention training for knowledge work]

Wirzberger, M., Oreshnikov, I., Passy, J., Lado, A., Shenhav, A., Lieder, F.

66th Spring Conference of the German Ergonomics Society, 2020 (conference)

Abstract
Unser digitales Zeitalter lebt von Informationen und stellt unsere begrenzte Verarbeitungskapazität damit täglich auf die Probe. Gerade in der Wissensarbeit haben ständige Ablenkungen erhebliche Leistungseinbußen zur Folge. Unsere intelligente Anwendung ACTrain setzt genau an dieser Stelle an und verwandelt Computertätigkeiten in eine Trainingshalle für den Geist. Feedback auf Basis maschineller Lernverfahren zeigt anschaulich den Wert auf, sich nicht von einer selbst gewählten Aufgabe ablenken zu lassen. Diese metakognitive Einsicht soll zum Durchhalten motivieren und das zugrunde liegende Fertigkeitsniveau der Aufmerksamkeitskontrolle stärken. In laufenden Feldexperimenten untersuchen wir die Frage, ob das Training mit diesem optimalen Feedback die Aufmerksamkeits- und Selbstkontrollfertigkeiten im Vergleich zu einer Kontrollgruppe ohne Feedback verbessern kann.

re sf

link (url) [BibTex]


no image
Fabrication and temperature-dependent magnetic properties of large-area L10-FePt/Co exchange-spring magnet nanopatterns

Son, K., Schütz, G.

{Physica E: Low-Dimensional Systems And Nanostructures}, 115, North-Holland, Amsterdam, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


General Movement Assessment from videos of computed {3D} infant body models is equally effective compared to conventional {RGB} Video rating
General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB Video rating

Schroeder, S., Hesse, N., Weinberger, R., Tacke, U., Gerstl, L., Hilgendorff, A., Heinen, F., Arens, M., Bodensteiner, C., Dijkstra, L. J., Pujades, S., Black, M., Hadders-Algra, M.

Early Human Development, 2020 (article)

Abstract
Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training hampering its implementation in clinical routine. This inspired a world-wide quest for automated GMA. Aim: To test whether a low-cost, marker-less system for three-dimensional motion capture from RGB depth sequences using a whole body infant model may serve as the basis for automated GMA. Study design: Clinical case study at an academic neurodevelopmental outpatient clinic. Subjects: Twenty-nine high-risk infants were recruited and assessed at their clinical follow-up at 2-4 month corrected age (CA). Their neurodevelopmental outcome was assessed regularly up to 12-31 months CA. Outcome measures: GMA according to Hadders-Algra by a masked GMA-expert of conventional and computed 3D body model (“SMIL motion”) videos of the same GMs. Agreement between both GMAs was assessed, and sensitivity and specificity of both methods to predict CP at ≥12 months CA. Results: The agreement of the two GMA ratings was substantial, with κ=0.66 for the classification of definitely abnormal (DA) GMs and an ICC of 0.887 (95% CI 0.762;0.947) for a more detailed GM-scoring. Five children were diagnosed with CP (four bilateral, one unilateral CP). The GMs of the child with unilateral CP were twice rated as mildly abnormal. DA-ratings of both videos predicted bilateral CP well: sensitivity 75% and 100%, specificity 88% and 92% for conventional and SMIL motion videos, respectively. Conclusions: Our computed infant 3D full body model is an attractive starting point for automated GMA in infants at risk of CP.

ps

[BibTex]

[BibTex]


Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage
Spatial Scheduling of Informative Meetings for Multi-Agent Persistent Coverage

Haksar, R. N., Trimpe, S., Schwager, M.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

ics

[BibTex]

[BibTex]


no image
Visual-Inertial Mapping with Non-Linear Factor Recovery

Usenko, V., Demmel, N., Schubert, D., Stückler, J., Cremers, D.

IEEE Robotics and Automation Letters (RA-L), 5, 2020, accepted for presentation at IEEE International Conference on Robotics and Automation (ICRA) 2020, to appear, arXiv:1904.06504 (article)

Abstract
Cameras and inertial measurement units are complementary sensors for ego-motion estimation and environment mapping. Their combination makes visual-inertial odometry (VIO) systems more accurate and robust. For globally consistent mapping, however, combining visual and inertial information is not straightforward. To estimate the motion and geometry with a set of images large baselines are required. Because of that, most systems operate on keyframes that have large time intervals between each other. Inertial data on the other hand quickly degrades with the duration of the intervals and after several seconds of integration, it typically contains only little useful information. In this paper, we propose to extract relevant information for visual-inertial mapping from visual-inertial odometry using non-linear factor recovery. We reconstruct a set of non-linear factors that make an optimal approximation of the information on the trajectory accumulated by VIO. To obtain a globally consistent map we combine these factors with loop-closing constraints using bundle adjustment. The VIO factors make the roll and pitch angles of the global map observable, and improve the robustness and the accuracy of the mapping. In experiments on a public benchmark, we demonstrate superior performance of our method over the state-of-the-art approaches.

ev

[BibTex]

[BibTex]


Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots
Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots

Oezge Drama, , Badri-Spröwitz, A.

Bioinspiration & Biomimetics, 2020 (article)

Abstract
Bipedal animals have diverse morphologies and advanced locomotion abilities. Terrestrial birds, in particular, display agile, efficient, and robust running motion, in which they exploit the interplay between the body segment masses and moment of inertias. On the other hand, most legged robots are not able to generate such versatile and energy-efficient motion and often disregard trunk movements as a means to enhance their locomotion capabilities. Recent research investigated how trunk motions affect the gait characteristics of humans, but there is a lack of analysis across different bipedal morphologies. To address this issue, we analyze avian running based on a spring-loaded inverted pendulum model with a pronograde (horizontal) trunk. We use a virtual point based control scheme and modify the alignment of the ground reaction forces to assess how our control strategy influences the trunk pitch oscillations and energetics of the locomotion. We derive three potential key strategies to leverage trunk pitch motions that minimize either the energy fluctuations of the center of mass or the work performed by the hip and leg. We suggest how these strategies could be used in legged robotics.

dlg

link (url) DOI [BibTex]


Safe and Fast Tracking Control on a Robot Manipulator: Robust MPC and Neural Network Control
Safe and Fast Tracking Control on a Robot Manipulator: Robust MPC and Neural Network Control

Nubert, J., Koehler, J., Berenz, V., Allgower, F., Trimpe, S.

IEEE Robotics and Automation Letters, 2020 (article) Accepted

am ics

arXiv PDF [BibTex]

arXiv PDF [BibTex]


no image
Thermal nucleation and high-resolution imaging of submicrometer magnetic bubbles in thin thulium iron garnet films with perpendicular anisotropy

Büttner, F., Mawass, M. A., Bauer, J., Rosenberg, E., Caretta, L., Avci, C. O., Gräfe, J., Finizio, S., Vaz, C. A. F., Novakovic, N., Weigand, M., Litzius, K., Förster, J., Träger, N., Groß, F., Suzuki, D., Huang, M., Bartell, J., Kronast, F., Raabe, J., Schütz, G., Ross, C. A., Beach, G. S. D.

{Physical Review Materials}, 4(1), American Physical Society, College Park, MD, 2020 (article)

mms

DOI [BibTex]

DOI [BibTex]


no image
DirectShape: Photometric Alignment of Shape Priors for Visual Vehicle Pose and Shape Estimation

Wang, R., Yang, N., Stückler, J., Cremers, D.

In Accepted for IEEE international Conference on Robotics and Automation (ICRA), 2020, arXiv:1904.10097 (inproceedings) Accepted

ev

[BibTex]

[BibTex]

2007


no image
A Tutorial on Spectral Clustering

von Luxburg, U.

Statistics and Computing, 17(4):395-416, December 2007 (article)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF PDF DOI [BibTex]

2007


PDF PDF DOI [BibTex]


no image
A Tutorial on Kernel Methods for Categorization

Jäkel, F., Schölkopf, B., Wichmann, F.

Journal of Mathematical Psychology, 51(6):343-358, December 2007 (article)

Abstract
The abilities to learn and to categorize are fundamental for cognitive systems, be it animals or machines, and therefore have attracted attention from engineers and psychologists alike. Modern machine learning methods and psychological models of categorization are remarkably similar, partly because these two fields share a common history in artificial neural networks and reinforcement learning. However, machine learning is now an independent and mature field that has moved beyond psychologically or neurally inspired algorithms towards providing foundations for a theory of learning that is rooted in statistics and functional analysis. Much of this research is potentially interesting for psychological theories of learning and categorization but also hardly accessible for psychologists. Here, we provide a tutorial introduction to a popular class of machine learning tools, called kernel methods. These methods are closely related to perceptrons, radial-basis-function neural networks and exemplar theories of catego rization. Recent theoretical advances in machine learning are closely tied to the idea that the similarity of patterns can be encapsulated in a positive definite kernel. Such a positive definite kernel can define a reproducing kernel Hilbert space which allows one to use powerful tools from functional analysis for the analysis of learning algorithms. We give basic explanations of some key concepts—the so-called kernel trick, the representer theorem and regularization—which may open up the possibility that insights from machine learning can feed back into psychology.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Accurate Splice site Prediction Using Support Vector Machines

Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.

BMC Bioinformatics, 8(Supplement 10):1-16, December 2007 (article)

Abstract
Background: For splice site recognition, one has to solve two classification problems: discriminating true from decoy splice sites for both acceptor and donor sites. Gene finding systems typically rely on Markov Chains to solve these tasks. Results: In this work we consider Support Vector Machines for splice site recognition. We employ the so-called weighted degree kernel which turns out well suited for this task, as we will illustrate in several experiments where we compare its prediction accuracy with that of recently proposed systems. We apply our method to the genome-wide recognition of splice sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Danio rerio, and Homo sapiens. Our performance estimates indicate that splice sites can be recognized very accurately in these genomes and that our method outperforms many other methods including Markov Chains, GeneSplicer and SpliceMachine. We provide genome-wide predictions of splice sites and a stand-alone prediction tool ready to be used for incorporation in a gene finder. Availability: Data, splits, additional information on the model selection, the whole genome predictions, as well as the stand-alone prediction tool are available for download at http:// www.fml.mpg.de/raetsch/projects/splice.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Towards compliant humanoids: an experimental assessment of suitable task space position/orientation controllers

Nakanishi, J., Mistry, M., Peters, J., Schaal, S.

In IROS 2007, 2007, pages: 2520-2527, (Editors: Grant, E. , T. C. Henderson), IEEE Service Center, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems, November 2007 (inproceedings)

Abstract
Compliant control will be a prerequisite for humanoid robotics if these robots are supposed to work safely and robustly in human and/or dynamic environments. One view of compliant control is that a robot should control a minimal number of degrees-of-freedom (DOFs) directly, i.e., those relevant DOFs for the task, and keep the remaining DOFs maximally compliant, usually in the null space of the task. This view naturally leads to task space control. However, surprisingly few implementations of task space control can be found in actual humanoid robots. This paper makes a first step towards assessing the usefulness of task space controllers for humanoids by investigating which choices of controllers are available and what inherent control characteristics they have—this treatment will concern position and orientation control, where the latter is based on a quaternion formulation. Empirical evaluations on an anthropomorphic Sarcos master arm illustrate the robustness of the different controllers as well as the eas e of implementing and tuning them. Our extensive empirical results demonstrate that simpler task space controllers, e.g., classical resolved motion rate control or resolved acceleration control can be quite advantageous in face of inevitable modeling errors in model-based control, and that well chosen formulations are easy to implement and quite robust, such that they are useful for humanoids.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Performance Stabilization and Improvement in Graph-based Semi-supervised Learning with Ensemble Method and Graph Sharpening

Choi, I., Shin, H.

In Korean Data Mining Society Conference, pages: 257-262, Korean Data Mining Society, Seoul, Korea, Korean Data Mining Society Conference, November 2007 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
A unifying framework for robot control with redundant DOFs

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.

Autonomous Robots, 24(1):1-12, October 2007 (article)

Abstract
Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K., Pereira, F., Rasmussen, C., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.

Journal of Machine Learning Research, 8, pages: 2443-2466, October 2007 (article)

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Discriminative Subsequence Mining for Action Classification

Nowozin, S., BakIr, G., Tsuda, K.

In ICCV 2007, pages: 1919-1923, IEEE Computer Society, Los Alamitos, CA, USA, 11th IEEE International Conference on Computer Vision, October 2007 (inproceedings)

Abstract
Recent approaches to action classification in videos have used sparse spatio-temporal words encoding local appearance around interesting movements. Most of these approaches use a histogram representation, discarding the temporal order among features. But this ordering information can contain important information about the action itself, e.g. consider the sport disciplines of hurdle race and long jump, where the global temporal order of motions (running, jumping) is important to discriminate between the two. In this work we propose to use a sequential representation which retains this temporal order. Further, we introduce Discriminative Subsequence Mining to find optimal discriminative subsequence patterns. In combination with the LPBoost classifier, this amounts to simultaneously learning a classification function and performing feature selection in the space of all possible feature sequences. The resulting classifier linearly combines a small number of interpretable decision functions, each checking for the presence of a single discriminative pattern. The classifier is benchmarked on the KTH action classification data set and outperforms the best known results in the literature.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Some observations on the masking effects of Mach bands

Curnow, T., Cowie, DA., Henning, GB., Hill, NJ.

Journal of the Optical Society of America A, 24(10):3233-3241, October 2007 (article)

Abstract
There are 8 cycle / deg ripples or oscillations in performance as a function of location near Mach bands in experiments measuring Mach bands’ masking effects on random polarity signal bars. The oscillations with increments are 180 degrees out of phase with those for decrements. The oscillations, much larger than the measurement error, appear to relate to the weighting function of the spatial-frequency-tuned channel detecting the broad- band signals. The ripples disappear with step maskers and become much smaller at durations below 25 ms, implying either that the site of masking has changed or that the weighting function and hence spatial-frequency tuning is slow to develop.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Hilbert Space Embedding for Distributions

Smola, A., Gretton, A., Song, L., Schölkopf, B.

In Algorithmic Learning Theory, Lecture Notes in Computer Science 4754 , pages: 13-31, (Editors: M Hutter and RA Servedio and E Takimoto), Springer, Berlin, Germany, 18th International Conference on Algorithmic Learning Theory (ALT), October 2007 (inproceedings)

Abstract
We describe a technique for comparing distributions without the need for density estimation as an intermediate step. Our approach relies on mapping the distributions into a reproducing kernel Hilbert space. Applications of this technique can be found in two-sample tests, which are used for determining whether two sets of observations arise from the same distribution, covariate shift correction, local learning, measures of independence, and density estimation.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Cluster Identification in Nearest-Neighbor Graphs

Maier, M., Hein, M., von Luxburg, U.

In ALT 2007, pages: 196-210, (Editors: Hutter, M. , R. A. Servedio, E. Takimoto), Springer, Berlin, Germany, 18th International Conference on Algorithmic Learning Theory, October 2007 (inproceedings)

Abstract
Assume we are given a sample of points from some underlying distribution which contains several distinct clusters. Our goal is to construct a neighborhood graph on the sample points such that clusters are ``identified‘‘: that is, the subgraph induced by points from the same cluster is connected, while subgraphs corresponding to different clusters are not connected to each other. We derive bounds on the probability that cluster identification is successful, and use them to predict ``optimal‘‘ values of k for the mutual and symmetric k-nearest-neighbor graphs. We point out different properties of the mutual and symmetric nearest-neighbor graphs related to the cluster identification problem.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Inducing Metric Violations in Human Similarity Judgements

Laub, J., Macke, J., Müller, K., Wichmann, F.

In Advances in Neural Information Processing Systems 19, pages: 777-784, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
Attempting to model human categorization and similarity judgements is both a very interesting but also an exceedingly difficult challenge. Some of the difficulty arises because of conflicting evidence whether human categorization and similarity judgements should or should not be modelled as to operate on a mental representation that is essentially metric. Intuitively, this has a strong appeal as it would allow (dis)similarity to be represented geometrically as distance in some internal space. Here we show how a single stimulus, carefully constructed in a psychophysical experiment, introduces l2 violations in what used to be an internal similarity space that could be adequately modelled as Euclidean. We term this one influential data point a conflictual judgement. We present an algorithm of how to analyse such data and how to identify the crucial point. Thus there may not be a strict dichotomy between either a metric or a non-metric internal space but rather degrees to which potentially large subsets of stimuli are represented metrically with a small subset causing a global violation of metricity.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Cross-Validation Optimization for Large Scale Hierarchical Classification Kernel Methods

Seeger, M.

In Advances in Neural Information Processing Systems 19, pages: 1233-1240, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We propose a highly efficient framework for kernel multi-class models with a large and structured set of classes. Kernel parameters are learned automatically by maximizing the cross-validation log likelihood, and predictive probabilities are estimated. We demonstrate our approach on large scale text classification tasks with hierarchical class structure, achieving state-of-the-art results in an order of magnitude less time than previous work.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Local Learning Approach for Clustering

Wu, M., Schölkopf, B.

In Advances in Neural Information Processing Systems 19, pages: 1529-1536, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We present a local learning approach for clustering. The basic idea is that a good clustering result should have the property that the cluster label of each data point can be well predicted based on its neighboring data and their cluster labels, using current supervised learning methods. An optimization problem is formulated such that its solution has the above property. Relaxation and eigen-decomposition are applied to solve this optimization problem. We also briefly investigate the parameter selection issue and provide a simple parameter selection method for the proposed algorithm. Experimental results are provided to validate the effectiveness of the proposed approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Mining complex genotypic features for predicting HIV-1 drug resistance

Saigo, H., Uno, T., Tsuda, K.

Bioinformatics, 23(18):2455-2462, September 2007 (article)

Abstract
Human immunodeficiency virus type 1 (HIV-1) evolves in human body, and its exposure to a drug often causes mutations that enhance the resistance against the drug. To design an effective pharmacotherapy for an individual patient, it is important to accurately predict the drug resistance based on genotype data. Notably, the resistance is not just the simple sum of the effects of all mutations. Structural biological studies suggest that the association of mutations is crucial: Even if mutations A or B alone do not affect the resistance, a significant change might happen when the two mutations occur together. Linear regression methods cannot take the associations into account, while decision tree methods can reveal only limited associations. Kernel methods and neural networks implicitly use all possible associations for prediction, but cannot select salient associations explicitly. Our method, itemset boosting, performs linear regression in the complete space of power sets of mutations. It implements a forward feature selection procedure where, in each iteration, one mutation combination is found by an efficient branch-and-bound search. This method uses all possible combinations, and salient associations are explicitly shown. In experiments, our method worked particularly well for predicting the resistance of nucleotide reverse transcriptase inhibitors (NRTIs). Furthermore, it successfully recovered many mutation associations known in biological literature.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Branch and Bound for Semi-Supervised Support Vector Machines

Chapelle, O., Sindhwani, V., Keerthi, S.

In Advances in Neural Information Processing Systems 19, pages: 217-224, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
Semi-supervised SVMs (S3VMs) attempt to learn low-density separators by maximizing the margin over labeled and unlabeled examples. The associated optimization problem is non-convex. To examine the full potential of S3VMs modulo local minima problems in current implementations, we apply branch and bound techniques for obtaining exact, globally optimal solutions. Empirical evidence suggests that the globally optimal solution can return excellent generalization performance in situations where other implementations fail completely. While our current implementation is only applicable to small datasets, we discuss variants that can potentially lead to practically useful algorithms.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A Kernel Method for the Two-Sample-Problem

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.

In Advances in Neural Information Processing Systems 19, pages: 513-520, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We propose two statistical tests to determine if two samples are from different distributions. Our test statistic is in both cases the distance between the means of the two samples mapped into a reproducing kernel Hilbert space (RKHS). The first test is based on a large deviation bound for the test statistic, while the second is based on the asymptotic distribution of this statistic. The test statistic can be computed in $O(m^2)$ time. We apply our approach to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where our test performs strongly. We also demonstrate excellent performance when comparing distributions over graphs, for which no alternative tests currently exist.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
An Efficient Method for Gradient-Based Adaptation of Hyperparameters in SVM Models

Keerthi, S., Sindhwani, V., Chapelle, O.

In Advances in Neural Information Processing Systems 19, pages: 673-680, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We consider the task of tuning hyperparameters in SVM models based on minimizing a smooth performance validation function, e.g., smoothed k-fold cross-validation error, using non-linear optimization techniques. The key computation in this approach is that of the gradient of the validation function with respect to hyperparameters. We show that for large-scale problems involving a wide choice of kernel-based models and validation functions, this computation can be very efficiently done; often within just a fraction of the training time. Empirical results show that a near-optimal set of hyperparameters can be identified by our approach with very few training rounds and gradient computations.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning Dense 3D Correspondence

Steinke, F., Schölkopf, B., Blanz, V.

In Advances in Neural Information Processing Systems 19, pages: 1313-1320, (Editors: B Schölkopf and J Platt and T Hofmann), MIT Press, Cambridge, MA, USA, 20th Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
Establishing correspondence between distinct objects is an important and nontrivial task: correctness of the correspondence hinges on properties which are difficult to capture in an a priori criterion. While previous work has used a priori criteria which in some cases led to very good results, the present paper explores whether it is possible to learn a combination of features that, for a given training set of aligned human heads, characterizes the notion of correct correspondence. By optimizing this criterion, we are then able to compute correspondence and morphs for novel heads.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Optimal Dominant Motion Estimation using Adaptive Search of Transformation Space

Ulges, A., Lampert, CH., Keysers, D., Breuel, TM.

In DAGM 2007, pages: 204-215, (Editors: Hamprecht, F. A., C. Schnörr, B. Jähne), Springer, Berlin, Germany, 29th Annual Symposium of the German Association for Pattern Recognition, September 2007 (inproceedings)

Abstract
The extraction of a parametric global motion from a motion field is a task with several applications in video processing. We present two probabilistic formulations of the problem and carry out optimization using the RAST algorithm, a geometric matching method novel to motion estimation in video. RAST uses an exhaustive and adaptive search of transformation space and thus gives -- in contrast to local sampling optimization techniques used in the past -- a globally optimal solution. Among other applications, our framework can thus be used as a source of ground truth for benchmarking motion estimation algorithms. Our main contributions are: first, the novel combination of a state-of- the-art MAP criterion for dominant motion estimation with a search procedure that guarantees global optimality. Second, experimental re- sults that illustrate the superior performance of our approach on synthetic flow fields as well as real-world video streams. Third, a significant speedup of the search achieved by extending the mod el with an additional smoothness prior.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Output Grouping using Dirichlet Mixtures of Linear Gaussian State-Space Models

Chiappa, S., Barber, D.

In ISPA 2007, pages: 446-451, IEEE Computer Society, Los Alamitos, CA, USA, 5th International Symposium on Image and Signal Processing and Analysis, September 2007 (inproceedings)

Abstract
We consider a model to cluster the components of a vector time-series. The task is to assign each component of the vector time-series to a single cluster, basing this assignment on the simultaneous dynamical similarity of the component to other components in the cluster. This is in contrast to the more familiar task of clustering a set of time-series based on global measures of their similarity. The model is based on a Dirichlet Mixture of Linear Gaussian State-Space models (LGSSMs), in which each LGSSM is treated with a prior to encourage the simplest explanation. The resulting model is approximated using a ‘collapsed’ variational Bayes implementation.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Manifold Denoising

Hein, M., Maier, M.

In Advances in Neural Information Processing Systems 19, pages: 561-568, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We consider the problem of denoising a noisily sampled submanifold $M$ in $R^d$, where the submanifold $M$ is a priori unknown and we are only given a noisy point sample. The presented denoising algorithm is based on a graph-based diffusion process of the point sample. We analyze this diffusion process using recent results about the convergence of graph Laplacians. In the experiments we show that our method is capable of dealing with non-trivial high-dimensional noise. Moreover using the denoising algorithm as pre-processing method we can improve the results of a semi-supervised learning algorithm.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
How to Find Interesting Locations in Video: A Spatiotemporal Interest Point Detector Learned from Human Eye movements

Kienzle, W., Schölkopf, B., Wichmann, F., Franz, M.

In Pattern Recognition, pages: 405-414, (Editors: FA Hamprecht and C Schnörr and B Jähne), Springer, Berlin, Germany, 29th Annual Symposium of the German Association for Pattern Recognition (DAGM), September 2007 (inproceedings)

Abstract
Interest point detection in still images is a well-studied topic in computer vision. In the spatiotemporal domain, however, it is still unclear which features indicate useful interest points. In this paper we approach the problem by emph{learning} a detector from examples: we record eye movements of human subjects watching video sequences and train a neural network to predict which locations are likely to become eye movement targets. We show that our detector outperforms current spatiotemporal interest point architectures on a standard classification dataset.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]