Header logo is


2020


Gripping apparatus and method of producing a gripping apparatus
Gripping apparatus and method of producing a gripping apparatus

Song, S., Sitti, M., Drotlef, D., Majidi, C.

Google Patents, Febuary 2020, US Patent App. 16/610,209 (patent)

Abstract
The present invention relates to a gripping apparatus comprising a membrane; a flexible housing; with said membrane being fixedly connected to a periphery of the housing. The invention further relates to a method of producing a gripping apparatus.

pi

[BibTex]

2020


[BibTex]


Method of actuating a shape changeable member, shape changeable member and actuating system
Method of actuating a shape changeable member, shape changeable member and actuating system

Hu, W., Lum, G. Z., Mastrangeli, M., Sitti, M.

Google Patents, January 2020, US Patent App. 16/477,593 (patent)

Abstract
The present invention relates to a method of actuating a shape changeable member of actuatable material. The invention further relates to a shape changeable member and to a system comprising such a shape changeable member and a magnetic field apparatus.

pi

[BibTex]


no image
Interaction of hydrogen isotopes with flexible metal-organic frameworks

Bondorf, L.

Universität Stuttgart, Stuttgart, 2020 (mastersthesis)

mms

[BibTex]

[BibTex]


Electronics, Software and Analysis of a Bioinspired Sensorized Quadrupedal Robot
Electronics, Software and Analysis of a Bioinspired Sensorized Quadrupedal Robot

Petereit, R.

Technische Universität München, 2020 (mastersthesis)

dlg

[BibTex]

2009


no image
Kernel Learning Approaches for Image Classification

Gehler, PV.

Biologische Kybernetik, Universität des Saarlandes, Saarbrücken, Germany, October 2009 (phdthesis)

Abstract
This thesis extends the use of kernel learning techniques to specific problems of image classification. Kernel learning is a paradigm in the field of machine learning that generalizes the use of inner products to compute similarities between arbitrary objects. In image classification one aims to separate images based on their visual content. We address two important problems that arise in this context: learning with weak label information and combination of heterogeneous data sources. The contributions we report on are not unique to image classification, and apply to a more general class of problems. We study the problem of learning with label ambiguity in the multiple instance learning framework. We discuss several different image classification scenarios that arise in this context and argue that the standard multiple instance learning requires a more detailed disambiguation. Finally we review kernel learning approaches proposed for this problem and derive a more efficient algorithm to solve them. The multiple kernel learning framework is an approach to automatically select kernel parameters. We extend it to its infinite limit and present an algorithm to solve the resulting problem. This result is then applied in two directions. We show how to learn kernels that adapt to the special structure of images. Finally we compare different ways of combining image features for object classification and present significant improvements compared to previous methods.

ei

PDF [BibTex]

2009


PDF [BibTex]


no image
Kernel Methods in Computer Vision:Object Localization, Clustering,and Taxonomy Discovery

Blaschko, MB.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, March 2009 (phdthesis)

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Motor Control and Learning in Table Tennis

Mülling, K.

Eberhard Karls Universität Tübingen, Gerrmany, 2009 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Hierarchical Clustering and Density Estimation Based on k-nearest-neighbor graphs

Drewe, P.

Eberhard Karls Universität Tübingen, Germany, 2009 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Learning with Structured Data: Applications to Computer Vision

Nowozin, S.

Technische Universität Berlin, Germany, 2009 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
From Differential Equations to Differential Geometry: Aspects of Regularisation in Machine Learning

Steinke, F.

Universität des Saarlandes, Saarbrücken, Germany, 2009 (phdthesis)

ei

PDF [BibTex]


no image
Magnetische L10-FePt Nanostrukturen für höchste Datenspeicherdichten

Breitling, A.

Universität Stuttgart, Stuttgart, 2009 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Ab-initio Elliott-Yafet modeling of ultrafast demagnetization after laser irradiation

Illg, C.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Element specific investigation of the magnetization profile at the CrO2/RuO2 interface

Zafar, K.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Bayesian Methods for Autonomous Learning Systems (Phd Thesis)

Ting, J.

Department of Computer Science, University of Southern California, Los Angeles, CA, 2009, clmc (phdthesis)

am

PDF [BibTex]

PDF [BibTex]


no image
Magnetic resonant reflectometry on exchange bias systems

Brück, S.

Universität Stuttgart, Stuttgart, 2009 (phdthesis)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
In-situ - Untersuchungen zu Interdiffusion und Magnetismus in magnetischen Multilayern

Schmidt, M.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Theorie der elektronischen Zustände in oxidischen magnetischen Materialien

Kostoglou, C.

Universität Stuttgart, Stuttgart, 2009 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Magnetooptische Untersuchungen an Ferromagnet- und Supraleiter-Nanosystemen und deren Hybriden

Treiber, S.

Universität Stuttgart, Stuttgart, 2009 (mastersthesis)

mms

[BibTex]

[BibTex]

2002


no image
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond

Schölkopf, B., Smola, A.

pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)

Abstract
In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

ei

Web [BibTex]

2002


Web [BibTex]


no image
Untersuchungen zur Spindynamik in nanostrukturierten ferromagnetischen Schichtsystemen

Puzic, A.

Universität Stuttgart, Stuttgart, 2002 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Magnetic Imaging of Nanostructured Systems with Transmission X-Ray Microscopy

Eimüller, T.

Bayrische Julius-Maximilians-Universität Würzburg, Würzburg, 2002 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Ab-initio Berechnung der Spinwellenspektren von Eisen, Kobalt und Nickel

Grotheer, O.

Universität Stuttgart, Stuttgart, 2002 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Kernspinresonanzuntersuchungen zur Diffusion von Wasserstoff in kubischen Lavesphasen

Eberle, U.

Universität Stuttgart, Stuttgart, 2002 (phdthesis)

mms

[BibTex]

[BibTex]

1992


no image
Integrierte Wissensverarbeitung mit CAD am Beispiel der konstruktionsbegleitenden Kalkulation (Ways to smarter CAD Systems)

Schaal, S.

Hanser 1992. (Konstruktionstechnik München Band 8). Zugl. München: TU Diss., München, 1992, clmc (book)

am

[BibTex]

1992


[BibTex]


no image
test jon
(book)

[BibTex]