Header logo is


2015


Thumb xl thumb
Proceedings of the 37th German Conference on Pattern Recognition

Gall, J., Gehler, P., Leibe, B.

Springer, German Conference on Pattern Recognition, October 2015 (proceedings)

ps

GCPR conference website [BibTex]

2015


GCPR conference website [BibTex]


no image
Learning robots

Trimpe, S.

2015 (mpi_year_book)

Abstract
An exploded power plant, collapsed buildings after an earthquake, a burning vehicle loaded with hazardous goods – all of these are dangerous situations for human emergency responders. What if we could send robots instead of humans? Researchers at the Autonomous Motion Department work on fundamental principles required to build intelligent robots which one day can help us in dangerous situations. A key requirement for making this happen is that robots must be enabled to learn.

link (url) [BibTex]


no image
The smallest human-made nano-motor

Sánchez, Samuel

2015 (mpi_year_book)

Abstract
Tiny self-propelled motors which speed through the water and clean up pollutions along the way or small robots which can swim effortlessly through blood to one day transport medication to a certain part of the body – this sounds like taken from a science fiction movie script. However, Samuel Sánchez is already hard at work in his lab at the Max Planck Institute for Intelligent Systems in Stuttgart to make these visions come true. Self-propelled micro-nanorobots and the usage as integrated sensors in microfluid-chips: that’s the topic of Sánchez` research group.

link (url) [BibTex]

link (url) [BibTex]

2004


no image
Advanced Lectures on Machine Learning

Bousquet, O., von Luxburg, U., Rätsch, G.

ML Summer Schools 2003, LNAI 3176, pages: 240, Springer, Berlin, Germany, ML Summer Schools, September 2004 (proceedings)

Abstract
Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in T{\"u}bingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.

ei

Web [BibTex]

2004


Web [BibTex]


no image
Pattern Recognition: 26th DAGM Symposium, LNCS, Vol. 3175

Rasmussen, C., Bülthoff, H., Giese, M., Schölkopf, B.

Proceedings of the 26th Pattern Recognition Symposium (DAGM‘04), pages: 581, Springer, Berlin, Germany, 26th Pattern Recognition Symposium, August 2004 (proceedings)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference

Thrun, S., Saul, L., Schölkopf, B.

Proceedings of the Seventeenth Annual Conference on Neural Information Processing Systems (NIPS 2003), pages: 1621, MIT Press, Cambridge, MA, USA, 17th Annual Conference on Neural Information Processing Systems (NIPS), June 2004 (proceedings)

Abstract
The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees—physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only thirty percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains all the papers presented at the 2003 conference.

ei

Web [BibTex]

Web [BibTex]