Header logo is


2020


no image
Vision-based Force Estimation for a da Vinci Instrument Using Deep Neural Networks

Lee, Y., Husin, H. M., Forte, M. P., Lee, S., Kuchenbecker, K. J.

Extended abstract presented as an Emerging Technology ePoster at the Annual Meeting of the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES), Cleveland, Ohio, USA, August 2020 (misc) Accepted

hi

[BibTex]

2020


[BibTex]


A Fabric-Based Sensing System for Recognizing Social Touch
A Fabric-Based Sensing System for Recognizing Social Touch

Burns, R. B., Lee, H., Seifi, H., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) to be presented at the IEEE Haptics Symposium, Washington, DC, USA, March 2020 (misc) Accepted

Abstract
We present a fabric-based piezoresistive tactile sensor system designed to detect social touch gestures on a robot. The unique sensor design utilizes three layers of low-conductivity fabric sewn together on alternating edges to form an accordion pattern and secured between two outer high-conductivity layers. This five-layer design demonstrates a greater resistance range and better low-force sensitivity than previous designs that use one layer of low-conductivity fabric with or without a plastic mesh layer. An individual sensor from our system can presently identify six different communication gestures – squeezing, patting, scratching, poking, hand resting without movement, and no touch – with an average accuracy of 90%. A layer of foam can be added beneath the sensor to make a rigid robot more appealing for humans to touch without inhibiting the system’s ability to register social touch gestures.

hi

Project Page [BibTex]

Project Page [BibTex]


Do Touch Gestures Affect How Electrovibration Feels?
Do Touch Gestures Affect How Electrovibration Feels?

Vardar, Y., Kuchenbecker, K. J.

Hands-on demonstration (1 page) presented at the IEEE Haptics Symposium, Washington, DC, USA, March 2020 (misc) Accepted

hi

[BibTex]

[BibTex]

2012


no image
Methods, apparatuses, and systems for micromanipulation with adhesive fibrillar structures

Sitti, M., Mengüç, Y.

December 2012, US Patent App. 14/368,079 (misc)

pi

[BibTex]

2012



no image
Dry adhesive structures

Sitti, M., Murphy, M., Aksak, B.

December 2012, US Patent App. 13/533,386 (misc)

pi

[BibTex]

[BibTex]


no image
Methods of making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

June 2012, US Patent 8,206,631 (misc)

pi

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

March 2012, US Patent App. 13/429,621 (misc)

pi

[BibTex]

[BibTex]


no image
Brain-computer interfaces – a novel type of communication

Grosse-Wentrup, M.

2012 (mpi_year_book)

Abstract
Brain-computer interfaces (BCIs) provide a new means of communication that does not rely on volitional muscle control. This may provide the capability to locked-in patients, e.g., those suffering from amyotrophic lateral sclerosis, to maintain interactions with their environment. Besides providing communication capabilities to locked-in patients, BCIs may further prove to have a beneficial impact on stroke rehabilitation. In this article, the state-of-the-art of BCIs is reviewed and current research questions are discussed.

link (url) [BibTex]


no image
From artificial flagella to medical microbots – the start of a "phantastic voyage"

Fischer, P.

2012 (mpi_year_book)

Abstract
There have been numerous speculations in scientific publications and the popular media about wirelessly controlled microrobots (microbots) navigating the human body. Such micro-agents could revolutionize minimally invasive medical procedures. Using physical vapor deposition we grow billions of micron-sized colloidal screw-propellers on a wafer. These chiral mesoscopic screws can be magnetized and moved through solution under computer control. The screw-propellers resemble artificial flagella and are the only ‘microbots’ to date that can be fully controlled in solution at micron length scales.

link (url) [BibTex]

2005


no image
Adhesive microstructure and method of forming same

Fearing, R. S., Sitti, M.

March 2005, US Patent 6,872,439 (misc)

pi

[BibTex]

2005


[BibTex]