Header logo is


2015


Thumb xl screen shot 2015 09 09 at 12.09.20
Untethered Magnetic Micromanipulation

Diller, E., Sitti, M.

In Micro-and Nanomanipulation Tools, 13, 10, Wiley-VCH Verlag GmbH & Co. KGaA, November 2015 (inbook)

Abstract
This chapter discusses the methods and state of the art in microscale manipulation in remote environments using untethered microrobotic devices. It focuses on manipulation at the size scale of tens to hundreds of microns, where small size leads to a dominance of microscale physical effects and challenges in fabrication and actuation. To motivate the challenges of operating at this size scale, the chapter includes coverage of the physical forces relevant to microrobot motion and manipulation below the millimeter-size scale. It then introduces the actuation methods commonly used in untethered manipulation schemes, with particular focus on magnetic actuation due to its wide use in the field. The chapter divides these manipulation techniques into two types: contact manipulation, which relies on direct pushing or grasping of objects for motion, and noncontact manipulation, which relies indirectly on induced fluid flow from the microrobot motion to move objects without any direct contact.

pi

DOI Project Page [BibTex]

2015


DOI Project Page [BibTex]


no image
Kernel methods in medical imaging

Charpiat, G., Hofmann, M., Schölkopf, B.

In Handbook of Biomedical Imaging, pages: 63-81, 4, (Editors: Paragios, N., Duncan, J. and Ayache, N.), Springer, Berlin, Germany, June 2015 (inbook)

ei

Web link (url) [BibTex]

Web link (url) [BibTex]


no image
Lernende Roboter

Trimpe, S.

In Jahrbuch der Max-Planck-Gesellschaft, Max Planck Society, May 2015, (popular science article in German) (inbook)

am ics

link (url) [BibTex]

link (url) [BibTex]


no image
Autonomous Robots

Schaal, S.

In Jahrbuch der Max-Planck-Gesellschaft, May 2015 (incollection)

am

[BibTex]

[BibTex]


no image
Justifying Information-Geometric Causal Inference

Janzing, D., Steudel, B., Shajarisales, N., Schölkopf, B.

In Measures of Complexity: Festschrift for Alexey Chervonenkis, pages: 253-265, 18, (Editors: Vovk, V., Papadopoulos, H. and Gammerman, A.), Springer, 2015 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J. A., Schaal, S.

In Springer Handbook of Robotics 2nd Edition, pages: 1371-1394, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015 (incollection)

am

[BibTex]

[BibTex]

2008


no image
New Frontiers in Characterizing Structure and Dynamics by NMR

Nilges, M., Markwick, P., Malliavin, TE., Rieping, W., Habeck, M.

In Computational Structural Biology: Methods and Applications, pages: 655-680, (Editors: Schwede, T. , M. C. Peitsch), World Scientific, New Jersey, NJ, USA, May 2008 (inbook)

Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as the method of choice for studying both the structure and the dynamics of biological macromolecule in solution. Despite the maturity of the NMR method for structure determination, its application faces a number of challenges. The method is limited to systems of relatively small molecular mass, data collection times are long, data analysis remains a lengthy procedure, and it is difficult to evaluate the quality of the final structures. The last years have seen significant advances in experimental techniques to overcome or reduce some limitations. The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time–scales from picoseconds to seconds. NMR is unique in its ability to obtain dynamic information on an atomic scale. The experimental information on structure and dynamics is intricately mixed. It is however difficult to unite both structural and dynamical information into one consistent model, and protocols for the determination of structure and dynamics are performed independently. This chapter deals with the challenges posed by the interpretation of NMR data on structure and dynamics. We will first relate the standard structure calculation methods to Bayesian probability theory. We will then briefly describe the advantages of a fully Bayesian treatment of structure calculation. Then, we will illustrate the advantages of using Bayesian reasoning at least partly in standard structure calculations. The final part will be devoted to interpretation of experimental data on dynamics.

ei

Web [BibTex]

2008


Web [BibTex]


no image
A Robot System for Biomimetic Navigation: From Snapshots to Metric Embeddings of View Graphs

Franz, MO., Stürzl, W., Reichardt, W., Mallot, HA.

In Robotics and Cognitive Approaches to Spatial Mapping, pages: 297-314, Springer Tracts in Advanced Robotics ; 38, (Editors: Jefferies, M.E. , W.-K. Yeap), Springer, Berlin, Germany, 2008 (inbook)

Abstract
Complex navigation behaviour (way-finding) involves recognizing several places and encoding a spatial relationship between them. Way-finding skills can be classified into a hierarchy according to the complexity of the tasks that can be performed [8]. The most basic form of way-finding is route navigation, followed by topological navigation where several routes are integrated into a graph-like representation. The highest level, survey navigation, is reached when this graph can be embedded into a common reference frame. In this chapter, we present the building blocks for a biomimetic robot navigation system that encompasses all levels of this hierarchy. As a local navigation method, we use scene-based homing. In this scheme, a goal location is characterized either by a panoramic snapshot of the light intensities as seen from the place, or by a record of the distances to the surrounding objects. The goal is found by moving in the direction that minimizes the discrepancy between the recorded intensities or distances and the current sensory input. For learning routes, the robot selects distinct views during exploration that are close enough to be reached by snapshot-based homing. When it encounters already visited places during route learning, it connects the routes and thus forms a topological representation of its environment termed a view graph. The final stage, survey navigation, is achieved by a graph embedding procedure which complements the topologic information of the view graph with odometric position estimates. Calculation of the graph embedding is done with a modified multidimensional scaling algorithm which makes use of distances and angles between nodes.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Hydrogen adsorption (Carbon, Zeolites, Nanocubes)

Hirscher, M., Panella, B.

In Hydrogen as a Future Energy Carrier, pages: 173-188, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008 (incollection)

mms

[BibTex]

[BibTex]


no image
Ma\ssgeschneiderte Speichermaterialien

Hirscher, M.

In Von Brennstoffzellen bis Leuchtdioden (Energie und Chemie - Ein Bündnis für die Zukunft), pages: 31-33, Deutsche Bunsen-Gesellschaft für Physikalische Chemie e.V., Frankfurt am Main, 2008 (incollection)

mms

[BibTex]

[BibTex]

2005


no image
Support Vector Machines and Kernel Algorithms

Schölkopf, B., Smola, A.

In Encyclopedia of Biostatistics (2nd edition), Vol. 8, 8, pages: 5328-5335, (Editors: P Armitage and T Colton), John Wiley & Sons, NY USA, 2005 (inbook)

ei

[BibTex]

2005


[BibTex]


no image
Visual perception I: Basic principles

Wagemans, J., Wichmann, F., de Beeck, H.

In Handbook of Cognition, pages: 3-47, (Editors: Lamberts, K. , R. Goldstone), Sage, London, 2005 (inbook)

ei

[BibTex]

[BibTex]


no image
Geckobot and waalbot: Small-scale wall climbing robots

Unver, O., Murphy, M., Sitti, M.

In Infotech@ Aerospace, pages: 6940, 2005 (incollection)

pi

[BibTex]

[BibTex]

1993


no image
Learning passive motor control strategies with genetic algorithms

Schaal, S., Sternad, D.

In 1992 Lectures in complex systems, pages: 913-918, (Editors: Nadel, L.;Stein, D.), Addison-Wesley, Redwood City, CA, 1993, clmc (inbook)

Abstract
This study investigates learning passive motor control strategies. Passive control is understood as control without active error correction; the movement is stabilized by particular properties of the controlling dynamics. We analyze the task of juggling a ball on a racket. An approximation to the optimal solution of the task is derived by means of optimization theory. In order to model the learning process, the problem is coded for a genetic algorithm in representations without sensory or with sensory information. For all representations the genetic algorithm is able to find passive control strategies, but learning speed and the quality of the outcome are significantly different. A comparison with data from human subjects shows that humans seem to apply yet different movement strategies to the ones proposed. For the feedback representation some implications arise for learning from demonstration.

am

link (url) [BibTex]

1993


link (url) [BibTex]


no image
A genetic algorithm for evolution from an ecological perspective

Sternad, D., Schaal, S.

In 1992 Lectures in Complex Systems, pages: 223-231, (Editors: Nadel, L.;Stein, D.), Addison-Wesley, Redwood City, CA, 1993, clmc (inbook)

Abstract
In the population model presented, an evolutionary dynamic is explored which is based on the operator characteristics of genetic algorithms. An essential modification in the genetic algorithms is the inclusion of a constraint in the mixing of the gene pool. The pairing for the crossover is governed by a selection principle based on a complementarity criterion derived from the theoretical tenet of perception-action (P-A) mutuality of ecological psychology. According to Swenson and Turvey [37] P-A mutuality underlies evolution and is an integral part of its thermodynamics. The present simulation tested the contribution of P-A-cycles in evolutionary dynamics. A numerical experiment compares the population's evolution with and without this intentional component. The effect is measured in the difference of the rate of energy dissipation, as well as in three operationalized aspects of complexity. The results support the predicted increase in the rate of energy dissipation, paralleled by an increase in the average heterogeneity of the population. Furthermore, the spatio-temporal evolution of the system is tested for the characteristic power-law relations of a nonlinear system poised in a critical state. The frequency distribution of consecutive increases in population size shows a significantly different exponent in functional relationship.

am

[BibTex]

[BibTex]