Header logo is


2018


no image
Reducing 3D Vibrations to 1D in Real Time

Park, G., Kuchenbecker, K. J.

Hands-on demonstration (4 pages) presented at AsiaHaptics, Incheon, South Korea, November 2018 (misc)

Abstract
For simple and realistic vibrotactile feedback, 3D accelerations from real contact interactions are usually rendered using a single-axis vibration actuator; this dimensional reduction can be performed in many ways. This demonstration implements a real-time conversion system that simultaneously measures 3D accelerations and renders corresponding 1D vibrations using a two-pen interface. In the demonstration, a user freely interacts with various objects using an In-Pen that contains a 3-axis accelerometer. The captured accelerations are converted to a single-axis signal, and an Out-Pen renders the reduced signal for the user to feel. We prepared seven conversion methods from the simple use of a single-axis signal to applying principal component analysis (PCA) so that users can compare the performance of each conversion method in this demonstration.

hi

Project Page [BibTex]

2018


Project Page [BibTex]


Thumb xl representative image2
A Large-Scale Fabric-Based Tactile Sensor Using Electrical Resistance Tomography

Lee, H., Park, K., Kim, J., Kuchenbecker, K. J.

Hands-on demonstration (3 pages) presented at AsiaHaptics, Incheon, South Korea, November 2018 (misc)

Abstract
Large-scale tactile sensing is important for household robots and human-robot interaction because contacts can occur all over a robot’s body surface. This paper presents a new fabric-based tactile sensor that is straightforward to manufacture and can cover a large area. The tactile sensor is made of conductive and non-conductive fabric layers, and the electrodes are stitched with conductive thread, so the resulting device is flexible and stretchable. The sensor utilizes internal array electrodes and a reconstruction method called electrical resistance tomography (ERT) to achieve a high spatial resolution with a small number of electrodes. The developed sensor shows that only 16 electrodes can accurately estimate single and multiple contacts over a square that measures 20 cm by 20 cm.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl teaser ps hi
Statistical Modelling of Fingertip Deformations and Contact Forces during Tactile Interaction

Gueorguiev, D., Tzionas, D., Pacchierotti, C., Black, M. J., Kuchenbecker, K. J.

Extended abstract presented at the Hand, Brain and Technology conference (HBT), Ascona, Switzerland, August 2018 (misc)

Abstract
Little is known about the shape and properties of the human finger during haptic interaction, even though these are essential parameters for controlling wearable finger devices and deliver realistic tactile feedback. This study explores a framework for four-dimensional scanning (3D over time) and modelling of finger-surface interactions, aiming to capture the motion and deformations of the entire finger with high resolution while simultaneously recording the interfacial forces at the contact. Preliminary results show that when the fingertip is actively pressing a rigid surface, it undergoes lateral expansion and proximal/distal bending, deformations that cannot be captured by imaging of the contact area alone. Therefore, we are currently capturing a dataset that will enable us to create a statistical model of the finger’s deformations and predict the contact forces induced by tactile interaction with objects. This technique could improve current methods for tactile rendering in wearable haptic devices, which rely on general physical modelling of the skin’s compliance, by developing an accurate model of the variations in finger properties across the human population. The availability of such a model will also enable a more realistic simulation of virtual finger behaviour in virtual reality (VR) environments, as well as the ability to accurately model a specific user’s finger from lower resolution data. It may also be relevant for inferring the physical properties of the underlying tissue from observing the surface mesh deformations, as previously shown for body tissues.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl toc image
A machine from machines

Fischer, P.

Nature Physics, 14, pages: 1072–1073, July 2018 (misc)

Abstract
Building spinning microrotors that self-assemble and synchronize to form a gear sounds like an impossible feat. However, it has now been achieved using only a single type of building block -- a colloid that self-propels.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Reducing 3D Vibrations to 1D in Real Time

Park, G., Kuchenbecker, K. J.

Hands-on demonstration presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

Abstract
In this demonstration, you will hold two pen-shaped modules: an in-pen and an out-pen. The in-pen is instrumented with a high-bandwidth three-axis accelerometer, and the out-pen contains a one-axis voice coil actuator. Use the in-pen to interact with different surfaces; the measured 3D accelerations are continually converted into 1D vibrations and rendered with the out-pen for you to feel. You can test conversion methods that range from simply selecting a single axis to applying a discrete Fourier transform or principal component analysis for realistic and brisk real-time conversion.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Haptipedia: Exploring Haptic Device Design Through Interactive Visualizations

Seifi, H., Fazlollahi, F., Park, G., Kuchenbecker, K. J., MacLean, K. E.

Hands-on demonstration presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

Abstract
How many haptic devices have been proposed in the last 30 years? How can we leverage this rich source of design knowledge to inspire future innovations? Our goal is to make historical haptic invention accessible through interactive visualization of a comprehensive library – a Haptipedia – of devices that have been annotated with designer-relevant metadata. In this demonstration, participants can explore Haptipedia’s growing library of grounded force feedback devices through several prototype visualizations, interact with 3D simulations of the device mechanisms and movements, and tell us about the attributes and devices that could make Haptipedia a useful resource for the haptic design community.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Delivering 6-DOF Fingertip Tactile Cues

Young, E., Kuchenbecker, K. J.

Work-in-progress paper (5 pages) presented at EuroHaptics, Pisa, Italy, June 2018 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl koala
Designing a Haptic Empathetic Robot Animal for Children with Autism

Burns, R., Kuchenbecker, K. J.

Workshop paper (4 pages) presented at the Robotics: Science and Systems Workshop on Robot-Mediated Autism Intervention: Hardware, Software and Curriculum, Pittsburgh, USA, June 2018 (misc)

Abstract
Children with autism often endure sensory overload, may be nonverbal, and have difficulty understanding and relaying emotions. These experiences result in heightened stress during social interaction. Animal-assisted intervention has been found to improve the behavior of children with autism during social interaction, but live animal companions are not always feasible. We are thus in the process of designing a robotic animal to mimic some successful characteristics of animal-assisted intervention while trying to improve on others. The over-arching hypothesis of this research is that an appropriately designed robot animal can reduce stress in children with autism and empower them to engage in social interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Soft Multi-Axis Boundary-Electrode Tactile Sensors for Whole-Body Robotic Skin

Lee, H., Kim, J., Kuchenbecker, K. J.

Workshop paper (2 pages) presented at the RSS Pioneers Workshop, Pittsburgh, USA, June 2018 (misc)

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Poster Abstract: Toward Fast Closed-loop Control over Multi-hop Low-power Wireless Networks

Mager, F., Baumann, D., Trimpe, S., Zimmerling, M.

Proceedings of the 17th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 158-159, Porto, Portugal, April 2018 (poster)

ics

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Arm-Worn Tactile Displays

Kuchenbecker, K. J.

Cross-Cutting Challenge Interactive Discussion presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Fingertips and hands captivate the attention of most haptic interface designers, but humans can feel touch stimuli across the entire body surface. Trying to create devices that both can be worn and can deliver good haptic sensations raises challenges that rarely arise in other contexts. Most notably, tactile cues such as vibration, tapping, and squeezing are far simpler to implement in wearable systems than kinesthetic haptic feedback. This interactive discussion will present a variety of relevant projects to which I have contributed, attempting to pull out common themes and ideas for the future.

hi

[BibTex]

[BibTex]


Thumb xl wireframe main
Haptipedia: An Expert-Sourced Interactive Device Visualization for Haptic Designers

Seifi, H., MacLean, K. E., Kuchenbecker, K. J., Park, G.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Much of three decades of haptic device invention is effectively lost to today’s designers: dispersion across time, region, and discipline imposes an incalculable drag on innovation in this field. Our goal is to make historical haptic invention accessible through interactive navigation of a comprehensive library – a Haptipedia – of devices that have been annotated with designer-relevant metadata. To build this open resource, we will systematically mine the literature and engage the haptics community for expert annotation. In a multi-year broad-based initiative, we will empirically derive salient attributes of haptic devices, design an interactive visualization tool where device creators and repurposers can efficiently explore and search Haptipedia, and establish methods and tools to manually and algorithmically collect data from the haptics literature and our community of experts. This paper outlines progress in compiling an initial corpus of grounded force-feedback devices and their attributes, and it presents a concept sketch of the interface we envision.

hi

Project Page [BibTex]

Project Page [BibTex]


no image
Exercising with Baxter: Design and Evaluation of Assistive Social-Physical Human-Robot Interaction

Fitter, N. T., Mohan, M., Kuchenbecker, K. J., Johnson, M. J.

Workshop paper (6 pages) presented at the HRI Workshop on Personal Robots for Exercising and Coaching, Chicago, USA, March 2018 (misc)

Abstract
The worldwide population of older adults is steadily increasing and will soon exceed the capacity of assisted living facilities. Accordingly, we aim to understand whether appropriately designed robots could help older adults stay active and engaged while living at home. We developed eight human-robot exercise games for the Baxter Research Robot with the guidance of experts in game design, therapy, and rehabilitation. After extensive iteration, these games were employed in a user study that tested their viability with 20 younger and 20 older adult users. All participants were willing to enter Baxter’s workspace and physically interact with the robot. User trust and confidence in Baxter increased significantly between pre- and post-experiment assessments, and one individual from the target user population supplied us with abundant positive feedback about her experience. The preliminary results presented in this paper indicate potential for the use of two-armed human-scale robots for social-physical exercise interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Representation of sensory uncertainty in macaque visual cortex

Goris, R., Henaff, O., Meding, K.

Computational and Systems Neuroscience (COSYNE) 2018, March 2018 (poster)

ei

[BibTex]

[BibTex]


Thumb xl huggingpicture
Emotionally Supporting Humans Through Robot Hugs

Block, A. E., Kuchenbecker, K. J.

Workshop paper (2 pages) presented at the HRI Pioneers Workshop, Chicago, USA, March 2018 (misc)

Abstract
Hugs are one of the first forms of contact and affection humans experience. Due to their prevalence and health benefits, we want to enable robots to safely hug humans. This research strives to create and study a high fidelity robotic system that provides emotional support to people through hugs. This paper outlines our previous work evaluating human responses to a prototype’s physical and behavioral characteristics, and then it lays out our ongoing and future work.

hi

link (url) DOI Project Page [BibTex]

link (url) DOI Project Page [BibTex]


Thumb xl teaser ps hi
Towards a Statistical Model of Fingertip Contact Deformations from 4D Data

Gueorguiev, D., Tzionas, D., Pacchierotti, C., Black, M. J., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Little is known about the shape and properties of the human finger during haptic interaction even though this knowledge is essential to control wearable finger devices and deliver realistic tactile feedback. This study explores a framework for four-dimensional scanning and modeling of finger-surface interactions, aiming to capture the motion and deformations of the entire finger with high resolution. The results show that when the fingertip is actively pressing a rigid surface, it undergoes lateral expansion of about 0.2 cm and proximal/distal bending of about 30◦, deformations that cannot be captured by imaging of the contact area alone. This project constitutes a first step towards an accurate statistical model of the finger’s behavior during haptic interaction.

hi

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Can Humans Infer Haptic Surface Properties from Images?

Burka, A., Kuchenbecker, K. J.

Work-in-progress paper (3 pages) presented at the IEEE Haptics Symposium, San Francisco, USA, March 2018 (misc)

Abstract
Human children typically experience their surroundings both visually and haptically, providing ample opportunities to learn rich cross-sensory associations. To thrive in human environments and interact with the real world, robots also need to build models of these cross-sensory associations; current advances in machine learning should make it possible to infer models from large amounts of data. We previously built a visuo-haptic sensing device, the Proton Pack, and are using it to collect a large database of matched multimodal data from tool-surface interactions. As a benchmark to compare with machine learning performance, we conducted a human subject study (n = 84) on estimating haptic surface properties (here: hardness, roughness, friction, and warmness) from images. Using a 100-surface subset of our database, we showed images to study participants and collected 5635 ratings of the four haptic properties, which we compared with ratings made by the Proton Pack operator and with physical data recorded using motion, force, and vibration sensors. Preliminary results indicate weak correlation between participant and operator ratings, but potential for matching up certain human ratings (particularly hardness and roughness) with features from the literature.

hi

Project Page [BibTex]

Project Page [BibTex]


Thumb xl coregpatentfig
Co-Registration – Simultaneous Alignment and Modeling of Articulated 3D Shapes

Black, M., Hirshberg, D., Loper, M., Rachlin, E., Weiss, A.

Febuary 2018, U.S.~Patent 9,898,848 (misc)

Abstract
Present application refers to a method, a model generation unit and a computer program (product) for generating trained models (M) of moving persons, based on physically measured person scan data (S). The approach is based on a common template (T) for the respective person and on the measured person scan data (S) in different shapes and different poses. Scan data are measured with a 3D laser scanner. A generic personal model is used for co-registering a set of person scan data (S) aligning the template (T) to the set of person scans (S) while simultaneously training the generic personal model to become a trained person model (M) by constraining the generic person model to be scan-specific, person-specific and pose-specific and providing the trained model (M), based on the co registering of the measured object scan data (S).

ps

text [BibTex]


no image
Die kybernetische Revolution

Schölkopf, B.

15-Mar-2018, Süddeutsche Zeitung, 2018 (misc)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

7th AREADNE Conference on Research in Encoding and Decoding of Neural Ensembles, 2018 (poster)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Photorealistic Video Super Resolution

Pérez-Pellitero, E., Sajjadi, M. S. M., Hirsch, M., Schölkopf, B.

Workshop and Challenge on Perceptual Image Restoration and Manipulation (PIRM) at the 15th European Conference on Computer Vision (ECCV), 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Retinal image quality of the human eye across the visual field

Meding, K., Hirsch, M., Wichmann, F. A.

14th Biannual Conference of the German Society for Cognitive Science (KOGWIS 2018), 2018 (poster)

ei

[BibTex]

[BibTex]


no image
Emission and propagation of multi-dimensional spin waves in anisotropic spin textures

Sluka, V., Schneider, T., Gallardo, R. A., Kakay, A., Weigand, M., Warnatz, T., Mattheis, R., Roldan-Molina, A., Landeros, P., Tiberkevich, V., Slavin, A., Schütz, G., Erbe, A., Deac, A., Lindner, J., Raabe, J., Fassbender, J., Wintz, S.

2018 (misc)

mms

link (url) [BibTex]

link (url) [BibTex]


no image
Thermal skyrmion diffusion applied in probabilistic computing

Zázvorka, J., Jakobs, F., Heinze, D., Keil, N., Kromin, S., Jaiswal, S., Litzius, K., Jakob, G., Virnau, P., Pinna, D., Everschor-Sitte, K., Donges, A., Nowak, U., Kläui, M.

2018 (misc)

mms

link (url) [BibTex]

link (url) [BibTex]

2008


no image
Variational Bayesian Model Selection in Linear Gaussian State-Space based Models

Chiappa, S.

International Workshop on Flexible Modelling: Smoothing and Robustness (FMSR 2008), 2008, pages: 1, November 2008 (poster)

ei

Web [BibTex]

2008


Web [BibTex]


no image
Towards the neural basis of the flash-lag effect

Ecker, A., Berens, P., Hoenselaar, A., Subramaniyan, M., Tolias, A., Bethge, M.

International Workshop on Aspects of Adaptive Cortex Dynamics, 2008, pages: 1, September 2008 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Policy Learning: A Unified Perspective With Applications In Robotics

Peters, J., Kober, J., Nguyen-Tuong, D.

8th European Workshop on Reinforcement Learning for Robotics (EWRL 2008), 8, pages: 10, July 2008 (poster)

Abstract
Policy Learning approaches are among the best suited methods for high-dimensional, continuous control systems such as anthropomorphic robot arms and humanoid robots. In this paper, we show two contributions: firstly, we show a unified perspective which allows us to derive several policy learning al- gorithms from a common point of view, i.e, policy gradient algorithms, natural- gradient algorithms and EM-like policy learning. Secondly, we present several applications to both robot motor primitive learning as well as to robot control in task space. Results both from simulation and several different real robots are shown.

ei

PDF [BibTex]

PDF [BibTex]


no image
Reinforcement Learning of Perceptual Coupling for Motor Primitives

Kober, J., Peters, J.

8th European Workshop on Reinforcement Learning for Robotics (EWRL 2008), 8, pages: 16, July 2008 (poster)

Abstract
Reinforcement learning is a natural choice for the learning of complex motor tasks by reward-related self-improvement. As the space of movements is high-dimensional and continuous, a policy parametrization is needed which can be used in this context. Traditional motor primitive approaches deal largely with open-loop policies which can only deal with small perturbations. In this paper, we present a new type of motor primitive policies which serve as closed-loop policies together with an appropriate learning algorithm. Our new motor primitives are an augmented version version of the dynamic systems motor primitives that incorporates perceptual coupling to external variables. We show that these motor primitives can perform complex tasks such a Ball-in-a-Cup or Kendama task even with large variances in the initial conditions where a human would hardly be able to learn this task. We initialize the open-loop policies by imitation learning and the perceptual coupling with a handcrafted solution. We first improve the open-loop policies and subsequently the perceptual coupling using a novel reinforcement learning method which is particularly well-suited for motor primitives.

ei

PDF [BibTex]

PDF [BibTex]


no image
Flexible Models for Population Spike Trains

Bethge, M., Macke, J., Berens, P., Ecker, A., Tolias, A.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 52, June 2008 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Pairwise Correlations and Multineuronal Firing Patterns in the Primary Visual Cortex of the Awake, Behaving Macaque

Berens, P., Ecker, A., Subramaniyan, M., Macke, J., Hauck, P., Bethge, M., Tolias, A.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 48, June 2008 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Visual saliency re-visited: Center-surround patterns emerge as optimal predictors for human fixation targets

Wichmann, F., Kienzle, W., Schölkopf, B., Franz, M.

Journal of Vision, 8(6):635, 8th Annual Meeting of the Vision Sciences Society (VSS), June 2008 (poster)

Abstract
Humans perceives the world by directing the center of gaze from one location to another via rapid eye movements, called saccades. In the period between saccades the direction of gaze is held fixed for a few hundred milliseconds (fixations). It is primarily during fixations that information enters the visual system. Remarkably, however, after only a few fixations we perceive a coherent, high-resolution scene despite the visual acuity of the eye quickly decreasing away from the center of gaze: This suggests an effective strategy for selecting saccade targets. Top-down effects, such as the observer's task, thoughts, or intentions have an effect on saccadic selection. Equally well known is that bottom-up effects-local image structure-influence saccade targeting regardless of top-down effects. However, the question of what the most salient visual features are is still under debate. Here we model the relationship between spatial intensity patterns in natural images and the response of the saccadic system using tools from machine learning. This allows us to identify the most salient image patterns that guide the bottom-up component of the saccadic selection system, which we refer to as perceptive fields. We show that center-surround patterns emerge as the optimal solution to the problem of predicting saccade targets. Using a novel nonlinear system identification technique we reduce our learned classifier to a one-layer feed-forward network which is surprisingly simple compared to previously suggested models assuming more complex computations such as multi-scale processing, oriented filters and lateral inhibition. Nevertheless, our model is equally predictive and generalizes better to novel image sets. Furthermore, our findings are consistent with neurophysiological hardware in the superior colliculus. Bottom-up visual saliency may thus not be computed cortically as has been thought previously.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Analysis of Pattern Recognition Methods in Classifying Bold Signals in Monkeys at 7-Tesla

Ku, S., Gretton, A., Macke, J., Tolias, A., Logothetis, N.

AREADNE 2008: Research in Encoding and Decoding of Neural Ensembles, 2, pages: 67, June 2008 (poster)

Abstract
Pattern recognition methods have shown that fMRI data can reveal significant information about brain activity. For example, in the debate of how object-categories are represented in the brain, multivariate analysis has been used to provide evidence of distributed encoding schemes. Many follow-up studies have employed different methods to analyze human fMRI data with varying degrees of success. In this study we compare four popular pattern recognition methods: correlation analysis, support-vector machines (SVM), linear discriminant analysis and Gaussian naïve Bayes (GNB), using data collected at high field (7T) with higher resolution than usual fMRI studies. We investigate prediction performance on single trials and for averages across varying numbers of stimulus presentations. The performance of the various algorithms depends on the nature of the brain activity being categorized: for several tasks, many of the methods work well, whereas for others, no methods perform above chance level. An important factor in overall classification performance is careful preprocessing of the data, including dimensionality reduction, voxel selection, and outlier elimination.

ei

[BibTex]

[BibTex]


no image
The role of stimulus correlations for population decoding in the retina

Schwartz, G., Macke, J., Berry, M.

Computational and Systems Neuroscience 2008 (COSYNE 2008), 5, pages: 172, March 2008 (poster)

ei

PDF Web [BibTex]

PDF Web [BibTex]

2004


no image
S-cones contribute to flicker brightness in human vision

Wehrhahn, C., Hill, NJ., Dillenburger, B.

34(174.12), 34th Annual Meeting of the Society for Neuroscience (Neuroscience), October 2004 (poster)

Abstract
In the retina of primates three cone types sensitive to short, middle and long wavelengths of light convert photons into electrical signals. Many investigators have presented evidence that, in color normal observers, the signals of cones sensitive to short wavelengths of light (S-cones) do not contribute to the perception of brightness of a colored surface when this is alternated with an achromatic reference (flicker brightness). Other studies indicate that humans do use S-cone signals when performing this task. Common to all these studies is the small number of observers, whose performance data are reported. Considerable variability in the occurrence of cone types across observers has been found, but, to our knowledge, no cone counts exist from larger populations of humans. We reinvestigated how much the S-cones contribute to flicker brightness. 76 color normal observers were tested in a simple psychophysical procedure neutral to the cone type occurence (Teufel & Wehrhahn (2000), JOSA A 17: 994 - 1006). The data show that, in the majority of our observers, S-cones provide input with a negative sign - relative to L- and M-cone contribution - in the task in question. There is indeed considerable between-subject variability such that for 20 out of 76 observers the magnitude of this input does not differ significantly from 0. Finally, we argue that the sign of S-cone contribution to flicker brightness perception by an observer cannot be used to infer the relative sign their contributions to the neuronal signals carrying the information leading to the perception of flicker brightness. We conclude that studies which use only a small number of observers may easily fail to find significant evidence for the small but significant population tendency for the S-cones to contribute to flicker brightness. Our results confirm all earlier results and reconcile their contradictory interpretations.

ei

Web [BibTex]

2004


Web [BibTex]


no image
Human Classification Behaviour Revisited by Machine Learning

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

7, pages: 134, (Editors: Bülthoff, H.H., H.A. Mallot, R. Ulrich and F.A. Wichmann), 7th T{\"u}bingen Perception Conference (TWK), Febuary 2004 (poster)

Abstract
We attempt to understand visual classication in humans using both psychophysical and machine learning techniques. Frontal views of human faces were used for a gender classication task. Human subjects classied the faces and their gender judgment, reaction time (RT) and condence rating (CR) were recorded for each face. RTs are longer for incorrect answers than for correct ones, high CRs are correlated with low classication errors and RTs decrease as the CRs increase. This results suggest that patterns difcult to classify need more computation by the brain than patterns easy to classify. Hyperplane learning algorithms such as Support Vector Machines (SVM), Relevance Vector Machines (RVM), Prototype learners (Prot) and K-means learners (Kmean) were used on the same classication task using the Principal Components of the texture and oweld representation of the faces. The classication performance of the learning algorithms was estimated using the face database with the true gender of the faces as labels, and also with the gender estimated by the subjects. Kmean yield a classication performance close to humans while SVM and RVM are much better. This surprising behaviour may be due to the fact that humans are trained on real faces during their lifetime while they were here tested on articial ones, while the algorithms were trained and tested on the same set of stimuli. We then correlated the human responses to the distance of the stimuli to the separating hyperplane (SH) of the learning algorithms. On the whole stimuli far from the SH are classied more accurately, faster and with higher condence than those near to the SH if we pool data across all our subjects and stimuli. We also nd three noteworthy results. First, SVMs and RVMs can learn to classify faces using the subjects' labels but perform much better when using the true labels. Second, correlating the average response of humans (classication error, RT or CR) with the distance to the SH on a face-by-face basis using Spearman's rank correlation coefcients shows that RVMs recreate human performance most closely in every respect. Third, the mean-of-class prototype, its popularity in neuroscience notwithstanding, is the least human-like classier in all cases examined.

ei

Web [BibTex]

Web [BibTex]


no image
m-Alternative-Forced-Choice: Improving the Efficiency of the Method of Constant Stimuli

Jäkel, F., Hill, J., Wichmann, F.

7, pages: 118, 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
We explored several ways to improve the efficiency of measuring psychometric functions without resorting to adaptive procedures. a) The number m of alternatives in an m-alternative-forced-choice (m-AFC) task improves the efficiency of the method of constant stimuli. b) When alternatives are presented simultaneously on different positions on a screen rather than sequentially time can be saved and memory load for the subject can be reduced. c) A touch-screen can further help to make the experimental procedure more intuitive. We tested these ideas in the measurement of contrast sensitivity and compared them to results obtained by sequential presentation in two-interval-forced-choice (2-IFC). Qualitatively all methods (m-AFC and 2-IFC) recovered the characterictic shape of the contrast sensitivity function in three subjects. The m-AFC paradigm only took about 60% of the time of the 2-IFC task. We tried m=2,4,8 and found 4-AFC to give the best model fits and 2-AFC to have the least bias.

ei

Web [BibTex]

Web [BibTex]


no image
Efficient Approximations for Support Vector Classifiers

Kienzle, W., Franz, M.

7, pages: 68, 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
In face detection, support vector machines (SVM) and neural networks (NN) have been shown to outperform most other classication methods. While both approaches are learning-based, there are distinct advantages and drawbacks to each method: NNs are difcult to design and train but can lead to very small and efcient classiers. In comparison, SVM model selection and training is rather straightforward, and, more importantly, guaranteed to converge to a globally optimal (in the sense of training errors) solution. Unfortunately, SVM classiers tend to have large representations which are inappropriate for time-critical image processing applications. In this work, we examine various existing and new methods for simplifying support vector decision rules. Our goal is to obtain efcient classiers (as with NNs) while keeping the numerical and statistical advantages of SVMs. For a given SVM solution, we compute a cascade of approximations with increasing complexities. Each classier is tuned so that the detection rate is near 100%. At run-time, the rst (simplest) detector is evaluated on the whole image. Then, any subsequent classier is applied only to those positions that have been classied as positive throughout all previous stages. The false positive rate at the end equals that of the last (i.e. most complex) detector. In contrast, since many image positions are discarded by lower-complexity classiers, the average computation time per patch decreases signicantly compared to the time needed for evaluating the highest-complexity classier alone.

ei

Web [BibTex]

Web [BibTex]


no image
Selective Attention to Auditory Stimuli: A Brain-Computer Interface Paradigm

Hill, N., Lal, T., Schröder, M., Hinterberger, T., Birbaumer, N., Schölkopf, B.

7, pages: 102, (Editors: Bülthoff, H.H., H.A. Mallot, R. Ulrich and F.A. Wichmann), 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
During the last 20 years several paradigms for Brain Computer Interfaces have been proposed— see [1] for a recent review. They can be divided into (a) stimulus-driven paradigms, using e.g. event-related potentials or visual evoked potentials from an EEG signal, and (b) patient-driven paradigms such as those that use premotor potentials correlated with imagined action, or slow cortical potentials (e.g. [2]). Our aim is to develop a stimulus-driven paradigm that is applicable in practice to patients. Due to the unreliability of visual perception in “locked-in” patients in the later stages of disorders such as Amyotrophic Lateral Sclerosis, we concentrate on the auditory modality. Speci- cally, we look for the effects, in the EEG signal, of selective attention to one of two concurrent auditory stimulus streams, exploiting the increased activation to attended stimuli that is seen under some circumstances [3]. We present the results of our preliminary experiments on normal subjects. On each of 400 trials, two repetitive stimuli (sequences of drum-beats or other pulsed stimuli) could be heard simultaneously. The two stimuli were distinguishable from one another by their acoustic properties, by their source location (one from a speaker to the left of the subject, the other from the right), and by their differing periodicities. A visual cue preceded the stimulus by 500 msec, indicating which of the two stimuli to attend to, and the subject was instructed to count the beats in the attended stimulus stream. There were up to 6 beats of each stimulus: with equal probability on each trial, all 6 were played, or the fourth was omitted, or the fth was omitted. The 40-channel EEG signals were analyzed ofine to reconstruct which of the streams was attended on each trial. A linear Support Vector Machine [4] was trained on a random subset of the data and tested on the remainder. Results are compared from two types of pre-processing of the signal: for each stimulus stream, (a) EEG signals at the stream's beat periodicity are emphasized, or (b) EEG signals following beats are contrasted with those following missing beats. Both forms of pre-processing show promising results, i.e. that selective attention to one or the other auditory stream yields signals that are classiable signicantly above chance performance. In particular, the second pre-processing was found to be robust to reduction in the number of features used for classication (cf. [5]), helping us to eliminate noise.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Texture and Haptic Cues in Slant Discrimination: Measuring the Effect of Texture Type

Rosas, P., Wichmann, F., Ernst, M., Wagemans, J.

7, pages: 165, (Editors: Bülthoff, H. H., H. A. Mallot, R. Ulrich, F. A. Wichmann), 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
In a number of models of depth cue combination the depth percept is constructed via a weighted average combination of independent depth estimations. The inuence of each cue in such average depends on the reliability of the source of information [1,5]. In particular, Ernst and Banks (2002) formulate such combination as that of the minimum variance unbiased estimator that can be constructed from the available cues. We have observed systematic differences in slant discrimination performance of human observers when different types of textures were used as cue to slant [4]. If the depth percept behaves as described above, our measurements of the slopes of the psychometric functions provide the predicted weights for the texture cue for the ranked texture types. However, the results for slant discrimination obtained when combining these texture types with object motion results are difcult to reconcile with the minimum variance unbiased estimator model [3]. This apparent failure of such model might be explained by the existence of a coupling of texture and motion, violating the assumption of independence of cues. Hillis, Ernst, Banks, and Landy (2002) [2] have shown that while for between-modality combination the human visual system has access to the single-cue information, for withinmodality combination (visual cues) the single-cue information is lost. This suggests a coupling between visual cues and independence between visual and haptic cues. Then, in the present study we combined the different texture types with haptic information in a slant discrimination task, to test whether in the between-modality condition these cues are combined as predicted by an unbiased, minimum variance estimator model. The measured weights for the cues were consistent with a combination rule sensitive to the reliability of the sources of information, but did not match the predictions of a statistically optimal combination.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Efficient Approximations for Support Vector Classiers

Kienzle, W., Franz, M.

7, pages: 68, 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
In face detection, support vector machines (SVM) and neural networks (NN) have been shown to outperform most other classication methods. While both approaches are learning-based, there are distinct advantages and drawbacks to each method: NNs are difcult to design and train but can lead to very small and efcient classiers. In comparison, SVM model selection and training is rather straightforward, and, more importantly, guaranteed to converge to a globally optimal (in the sense of training errors) solution. Unfortunately, SVM classiers tend to have large representations which are inappropriate for time-critical image processing applications. In this work, we examine various existing and new methods for simplifying support vector decision rules. Our goal is to obtain efcient classiers (as with NNs) while keeping the numerical and statistical advantages of SVMs. For a given SVM solution, we compute a cascade of approximations with increasing complexities. Each classier is tuned so that the detection rate is near 100%. At run-time, the rst (simplest) detector is evaluated on the whole image. Then, any subsequent classier is applied only to those positions that have been classied as positive throughout all previous stages. The false positive rate at the end equals that of the last (i.e. most complex) detector. In contrast, since many image positions are discarded by lower-complexity classiers, the average computation time per patch decreases signicantly compared to the time needed for evaluating the highest-complexity classier alone.

ei

Web [BibTex]

Web [BibTex]


no image
EEG Channel Selection for Brain Computer Interface Systems Based on Support Vector Methods

Schröder, M., Lal, T., Bogdan, M., Schölkopf, B.

7, pages: 50, (Editors: Bülthoff, H.H., H.A. Mallot, R. Ulrich and F.A. Wichmann), 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
A Brain Computer Interface (BCI) system allows the direct interpretation of brain activity patterns (e.g. EEG signals) by a computer. Typical BCI applications comprise spelling aids or environmental control systems supporting paralyzed patients that have lost motor control completely. The design of an EEG based BCI system requires good answers for the problem of selecting useful features during the performance of a mental task as well as for the problem of classifying these features. For the special case of choosing appropriate EEG channels from several available channels, we propose the application of variants of the Support Vector Machine (SVM) for both problems. Although these algorithms do not rely on prior knowledge they can provide more accurate solutions than standard lter methods [1] for feature selection which usually incorporate prior knowledge about neural activity patterns during the performed mental tasks. For judging the importance of features we introduce a new relevance measure and apply it to EEG channels. Although we base the relevance measure for this purpose on the previously introduced algorithms, it does in general not depend on specic algorithms but can be derived using arbitrary combinations of feature selectors and classifiers.

ei

Web [BibTex]

Web [BibTex]


no image
Learning Depth

Sinz, F., Franz, MO.

pages: 69, (Editors: H.H.Bülthoff, H.A.Mallot, R.Ulrich,F.A.Wichmann), 7th T{\"u}bingen Perception Conference (TWK), February 2004 (poster)

Abstract
The depth of a point in space can be estimated by observing its image position from two different viewpoints. The classical approach to stereo vision calculates depth from the two projection equations which together form a stereocamera model. An unavoidable preparatory work for this solution is a calibration procedure, i.e., estimating the external (position and orientation) and internal (focal length, lens distortions etc.) parameters of each camera from a set of points with known spatial position and their corresponding image positions. This is normally done by iteratively linearizing the single camera models and reestimating their parameters according to the error on the known datapoints. The advantage of the classical method is the maximal usage of prior knowledge about the underlying physical processes and the explicit estimation of meaningful model parameters such as focal length or camera position in space. However, the approach neglects the nonlinear nature of the problem such that the results critically depend on the choice of the initial values for the parameters. In this study, we approach the depth estimation problem from a different point of view by applying generic machine learning algorithms to learn the mapping from image coordinates to spatial position. These algorithms do not require any domain knowledge and are able to learn nonlinear functions by mapping the inputs into a higher-dimensional space. Compared to classical calibration, machine learning methods give a direct solution to the depth estimation problem which means that the values of the stereocamera parameters cannot be extracted from the learned mapping. On the poster, we compare the performance of classical camera calibration to that of different machine learning algorithms such as kernel ridge regression, gaussian processes and support vector regression. Our results indicate that generic learning approaches can lead to higher depth accuracies than classical calibration although no domain knowledge is used.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Neural mechanisms underlying control of a Brain-Computer-Interface (BCI): Simultaneous recording of bold-response and EEG

Hinterberger, T., Wilhelm, B., Veit, R., Weiskopf, N., Lal, TN., Birbaumer, N.

2004 (poster)

Abstract
Brain computer interfaces (BCI) enable humans or animals to communicate or activate external devices without muscle activity using electric brain signals. The BCI Thought Translation Device (TTD) uses learned regulation of slow cortical potentials (SCPs), a skill most people and paralyzed patients can acquire with training periods of several hours up to months. The neurophysiological mechanisms and anatomical sources of SCPs and other event-related brain macro-potentials are well understood, but the neural mechanisms underlying learning of the self-regulation skill for BCI-use are unknown. To uncover the relevant areas of brain activation during regulation of SCPs, the TTD was combined with functional MRI and EEG was recorded inside the MRI scanner in twelve healthy participants who have learned to regulate their SCP with feedback and reinforcement. The results demonstrate activation of specific brain areas during execution of the brain regulation skill: successf! ul control of cortical positivity allowing a person to activate an external device was closely related to an increase of BOLD (blood oxygen level dependent) response in the basal ganglia and frontal premotor deactivation indicating learned regulation of a cortical-striatal loop responsible for local excitation thresholds of cortical assemblies. The data suggest that human users of a BCI learn the regulation of cortical excitation thresholds of large neuronal assemblies as a prerequisite of direct brain communication: the learning of this skill depends critically on an intact and flexible interaction between these cortico-basal ganglia-circuits. Supported by the Deutsche Forschungsgemeinschaft (DFG) and the National Institute of Health (NIH).

ei

[BibTex]

[BibTex]


no image
Masking by plaid patterns revisited

Wichmann, F.

Experimentelle Psychologie. Beitr{\"a}ge zur 46. Tagung experimentell arbeitender Psychologen, 46, pages: 285, 2004 (poster)

ei

[BibTex]

[BibTex]


no image
Early visual processing—data, theory, models

Wichmann, F.

Experimentelle Psychologie. Beitr{\"a}ge zur 46. Tagung experimentell arbeitender Psychologen, 46, pages: 24, 2004 (poster)

ei

[BibTex]

[BibTex]


no image
Statistische Lerntheorie und Empirische Inferenz

Schölkopf, B.

Jahrbuch der Max-Planck-Gesellschaft, 2004, pages: 377-382, 2004 (misc)

Abstract
Statistical learning theory studies the process of inferring regularities from empirical data. The fundamental problem is what is called generalization: how it is possible to infer a law which will be valid for an infinite number of future observations, given only a finite amount of data? This problem hinges upon fundamental issues of statistics and science in general, such as the problems of complexity of explanations, a priori knowledge, and representation of data.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Implicit Wiener series for capturing higher-order interactions in images

Franz, M., Schölkopf, B.

Sensory coding and the natural environment, (Editors: Olshausen, B.A. and M. Lewicki), 2004 (poster)

Abstract
The information about the objects in an image is almost exclusively described by the higher-order interactions of its pixels. The Wiener series is one of the standard methods to systematically characterize these interactions. However, the classical estimation method of the Wiener expansion coefficients via cross-correlation suffers from severe problems that prevent its application to high-dimensional and strongly nonlinear signals such as images. We propose an estimation method based on regression in a reproducing kernel Hilbert space that overcomes these problems using polynomial kernels as known from Support Vector Machines and other kernel-based methods. Numerical experiments show performance advantages in terms of convergence, interpretability and system sizes that can be handled. By the time of the conference, we will be able to present first results on the higher-order structure of natural images.

ei

[BibTex]

[BibTex]


no image
Classification and Memory Behaviour of Man Revisited by Machine

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

CSHL Meeting on Computational & Systems Neuroscience (COSYNE), 2004 (poster)

ei

[BibTex]

[BibTex]


no image
Nanoscale Materials for Energy Storage
{Materials Science \& Engineering B}, 108, pages: 292, Elsevier, 2004 (misc)

mms

[BibTex]

[BibTex]