ei
Peters, J., Janzing, D., Schölkopf, B.
Elements of Causal Inference - Foundations and Learning Algorithms
Adaptive Computation and Machine Learning Series, The MIT Press, Cambridge, MA, USA, 2017 (book)
pi
Sitti, M.
Mobile Microrobotics
Mobile Microrobotics, The MIT Press, Cambridge, MA, 2017 (book)
ei
pn
Gretton, A., Hennig, P., Rasmussen, C., Schölkopf, B.
New Directions for Learning with Kernels and Gaussian Processes (Dagstuhl Seminar 16481)
Dagstuhl Reports, 6(11):142-167, 2017 (book)
sf
Bramlage, L.
Design of a visualization scheme for functional connectivity data of Human Brain
Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)
al
Der, R., Martius, G.
The Playful Machine - Theoretical Foundation and Practical Realization of Self-Organizing Robots
Springer, Berlin Heidelberg, 2012 (book)
ps
Fossati, A., Gall, J., Grabner, H., Ren, X., Konolige, K.
Consumer Depth Cameras for Computer Vision - Research Topics and Applications
Advances in Computer Vision and Pattern Recognition, Springer, 2012 (book)
ei
Chapelle, O., Schölkopf, B., Zien, A.
Semi-Supervised Learning
pages: 508, Adaptive computation and machine learning, MIT Press, Cambridge, MA, USA, September 2006 (book)
ei
Rasmussen, CE., Williams, CKI.
Gaussian Processes for Machine Learning
pages: 248, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, January 2006 (book)
mms
Kronmüller, H., Fähnle, M.
Magnetism and the Microstructure of Ferromagnetic Solids
pages: 432 p., 1st ed., Cambridge University Press, Cambridge, 2003 (book)
ei
Schölkopf, B., Smola, A.
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
pages: 644, Adaptive Computation and Machine Learning, MIT Press, Cambridge, MA, USA, December 2002, Parts of this book, including an introduction to kernel methods, can be downloaded here. (book)