Header logo is


2017


no image
Improving performance of linear field generation with multi-coil setup by optimizing coils position

Aghaeifar, A., Loktyushin, A., Eschelbach, M., Scheffler, K.

Magnetic Resonance Materials in Physics, Biology and Medicine, 30(Supplement 1):S259, 34th Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), October 2017 (poster)

ei

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]


no image
Estimating B0 inhomogeneities with projection FID navigator readouts

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Image Quality Improvement by Applying Retrospective Motion Correction on Quantitative Susceptibility Mapping and R2*

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl fig1
Chapter 8 - Micro- and nanorobots in Newtonian and biological viscoelastic fluids

Palagi, S., (Walker) Schamel, D., Qiu, T., Fischer, P.

In Microbiorobotics, pages: 133 - 162, 8, Micro and Nano Technologies, Second edition, Elsevier, Boston, March 2017 (incollection)

Abstract
Swimming microorganisms are a source of inspiration for small scale robots that are intended to operate in fluidic environments including complex biomedical fluids. Nature has devised swimming strategies that are effective at small scales and at low Reynolds number. These include the rotary corkscrew motion that, for instance, propels a flagellated bacterial cell, as well as the asymmetric beat of appendages that sperm cells or ciliated protozoa use to move through fluids. These mechanisms can overcome the reciprocity that governs the hydrodynamics at small scale. The complex molecular structure of biologically important fluids presents an additional challenge for the effective propulsion of microrobots. In this chapter it is shown how physical and chemical approaches are essential in realizing engineered abiotic micro- and nanorobots that can move in biomedically important environments. Interestingly, we also describe a microswimmer that is effective in biological viscoelastic fluids that does not have a natural analogue.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl appealingavatars
Appealing Avatars from 3D Body Scans: Perceptual Effects of Stylization

Fleming, R., Mohler, B. J., Romero, J., Black, M. J., Breidt, M.

In Computer Vision, Imaging and Computer Graphics Theory and Applications: 11th International Joint Conference, VISIGRAPP 2016, Rome, Italy, February 27 – 29, 2016, Revised Selected Papers, pages: 175-196, Springer International Publishing, 2017 (inbook)

Abstract
Using styles derived from existing popular character designs, we present a novel automatic stylization technique for body shape and colour information based on a statistical 3D model of human bodies. We investigate whether such stylized body shapes result in increased perceived appeal with two different experiments: One focuses on body shape alone, the other investigates the additional role of surface colour and lighting. Our results consistently show that the most appealing avatar is a partially stylized one. Importantly, avatars with high stylization or no stylization at all were rated to have the least appeal. The inclusion of colour information and improvements to render quality had no significant effect on the overall perceived appeal of the avatars, and we observe that the body shape primarily drives the change in appeal ratings. For body scans with colour information, we found that a partially stylized avatar was perceived as most appealing.

ps

publisher site pdf DOI [BibTex]

publisher site pdf DOI [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J., Schaal, S.

In Springer Handbook of Robotics, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)

am ei

Project Page [BibTex]

Project Page [BibTex]


Thumb xl gcpr2017 nugget
Learning to Filter Object Detections

Prokudin, S., Kappler, D., Nowozin, S., Gehler, P.

In Pattern Recognition: 39th German Conference, GCPR 2017, Basel, Switzerland, September 12–15, 2017, Proceedings, pages: 52-62, Springer International Publishing, Cham, 2017 (inbook)

Abstract
Most object detection systems consist of three stages. First, a set of individual hypotheses for object locations is generated using a proposal generating algorithm. Second, a classifier scores every generated hypothesis independently to obtain a multi-class prediction. Finally, all scored hypotheses are filtered via a non-differentiable and decoupled non-maximum suppression (NMS) post-processing step. In this paper, we propose a filtering network (FNet), a method which replaces NMS with a differentiable neural network that allows joint reasoning and re-scoring of the generated set of hypotheses per image. This formulation enables end-to-end training of the full object detection pipeline. First, we demonstrate that FNet, a feed-forward network architecture, is able to mimic NMS decisions, despite the sequential nature of NMS. We further analyze NMS failures and propose a loss formulation that is better aligned with the mean average precision (mAP) evaluation metric. We evaluate FNet on several standard detection datasets. Results surpass standard NMS on highly occluded settings of a synthetic overlapping MNIST dataset and show competitive behavior on PascalVOC2007 and KITTI detection benchmarks.

ps

Paper link (url) DOI Project Page [BibTex]

Paper link (url) DOI Project Page [BibTex]


no image
Policy Gradient Methods

Peters, J., Bagnell, J.

In Encyclopedia of Machine Learning and Data Mining, pages: 982-985, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Unsupervised clustering of EOG as a viable substitute for optical eye-tracking

Flad, N., Fomina, T., Bülthoff, H. H., Chuang, L. L.

In First Workshop on Eye Tracking and Visualization (ETVIS 2015), pages: 151-167, Mathematics and Visualization, (Editors: Burch, M., Chuang, L., Fisher, B., Schmidt, A., and Weiskopf, D.), Springer, 2017 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Statistical Asymmetries Between Cause and Effect

Janzing, D.

In Time in Physics, pages: 129-139, Tutorials, Schools, and Workshops in the Mathematical Sciences, (Editors: Renner, Renato and Stupar, Sandra), Springer International Publishing, Cham, 2017 (inbook)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Robot Learning

Peters, J., Tedrake, R., Roy, N., Morimoto, J.

In Encyclopedia of Machine Learning and Data Mining, pages: 1106-1109, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl paraview preview
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]


Thumb xl auroteaser
Decentralized Simultaneous Multi-target Exploration using a Connected Network of Multiple Robots

Nestmeyer, T., Robuffo Giordano, P., Bülthoff, H. H., Franchi, A.

In pages: 989-1011, Autonomous Robots, 2017 (incollection)

ps

[BibTex]

[BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

ESI Systems Neuroscience Conference (ESI-SyNC 2017): Principles of Structural and Functional Connectivity, 2017 (poster)

ei

[BibTex]

[BibTex]


no image
Momentum-Centered Control of Contact Interactions

Righetti, L., Herzog, A.

In Geometric and Numerical Foundations of Movements, 117, pages: 339-359, Springer Tracts in Advanced Robotics, Springer, Cham, 2017 (incollection)

mg

link (url) [BibTex]

link (url) [BibTex]

2010


no image
Similarities in resting state and feature-driven activity: Non-parametric evaluation of human fMRI

Shelton, J., Blaschko, M., Gretton, A., Müller, J., Fischer, E., Bartels, A.

NIPS Workshop on Learning and Planning from Batch Time Series Data, December 2010 (poster)

ei

PDF Web [BibTex]

2010


PDF Web [BibTex]


no image
Markerless tracking of Dynamic 3D Scans of Faces

Walder, C., Breidt, M., Bülthoff, H., Schölkopf, B., Curio, C.

In Dynamic Faces: Insights from Experiments and Computation, pages: 255-276, (Editors: Curio, C., Bülthoff, H. H. and Giese, M. A.), MIT Press, Cambridge, MA, USA, December 2010 (inbook)

ei

Web [BibTex]

Web [BibTex]


no image
Policy Gradient Methods

Peters, J., Bagnell, J.

In Encyclopedia of Machine Learning, pages: 774-776, (Editors: Sammut, C. and Webb, G. I.), Springer, Berlin, Germany, December 2010 (inbook)

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Augmentation of fMRI Data Analysis using Resting State Activity and Semi-supervised Canonical Correlation Analysis

Shelton, JA., Blaschko, MB., Bartels, A.

NIPS Women in Machine Learning Workshop (WiML), December 2010 (poster)

Abstract
Resting state activity is brain activation that arises in the absence of any task, and is usually measured in awake subjects during prolonged fMRI scanning sessions where the only instruction given is to close the eyes and do nothing. It has been recognized in recent years that resting state activity is implicated in a wide variety of brain function. While certain networks of brain areas have different levels of activation at rest and during a task, there is nevertheless significant similarity between activations in the two cases. This suggests that recordings of resting state activity can be used as a source of unlabeled data to augment kernel canonical correlation analysis (KCCA) in a semisupervised setting. We evaluate this setting empirically yielding three main results: (i) KCCA tends to be improved by the use of Laplacian regularization even when no additional unlabeled data are available, (ii) resting state data seem to have a similar marginal distribution to that recorded during the execution of a visual processing task implying largely similar types of activation, and (iii) this source of information can be broadly exploited to improve the robustness of empirical inference in fMRI studies, an inherently data poor domain.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
High frequency phase-spike synchronization of extracellular signals modulates causal interactions in monkey primary visual cortex

Besserve, M., Murayama, Y., Schölkopf, B., Logothetis, N., Panzeri, S.

40(616.2), 40th Annual Meeting of the Society for Neuroscience (Neuroscience), November 2010 (poster)

Abstract
Functional correlates of Rhythms in the gamma band (30-100Hz) are observed in the mammalian brain with a large variety of functional correlates. Nevertheless, their functional role is still debated. One way to disentangle this issue is to go beyond usual correlation analysis and apply causality measures that quantify the directed interactions between the gamma rhythms and other aspects of neural activity. These measures can be further compared with other aspects of neurophysicological signals to find markers of neural interactions. In a recent study, we analyzed extracellular recordings in the primary visual cortex of 4 anesthetized macaques during the presentation of movie stimuli using a causality measure named Transfer Entropy. We found causal interactions between high frequency gamma rhythms (60-100Hz) recorded in different electrodes, involving in particular their phase, and between the gamma phase and spiking activity quantified by the instantaneous envelope of the MUA band (1-3kHz). Here, we further investigate in the same dataset the meaning of these phase-MUA and phase-phase causal interactions by studying the distribution of phases at multiple recording sites at lags around the occurrence of spiking events. First, we found a sharpening of the gamma phase distribution in one electrode when spikes are occurring in other recording site. This phenomena appeared as a form of phase-spike synchronization and was quantified by an information theoretic measure. We found this measure correlates significantly with phase-MUA causal interactions. Additionally, we quantified in a similar way the interplay between spiking and the phase difference between two recording sites (reflecting the well-know concept of phase synchronization). We found that, depending on the couple of recording site, spiking can correlate either with a phase synchronization or with a desynchronization with respect to the baseline. This effect correlates very well with the phase-phase causality measure. These results provide evidence for high frequency phase-spike synchronization to reflect communication between distant neural populations in V1. Conversely, both phase synchronization or desynchronization may favor neural communication between recording sites. This new result, which contrasts with current hypothesis on the role of phase synchronization, could be interpreted as the presence of inhibitory interactions that are suppressed by desynchronization. Finally, our findings give new insights into the role of gamma rhythms in regulating local computation in the visual cortex.

ei

Web [BibTex]

Web [BibTex]


no image
Attenuation Correction for Whole Body PET/MR: Quantitative Evaluation and Lung Attenuation Estimation with Consistency Information

Bezrukov, I., Hofmann, M., Aschoff, P., Beyer, T., Mantlik, F., Pichler, B., Schölkopf, B.

2010(M13-122), 2010 Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), November 2010 (poster)

ei

[BibTex]

[BibTex]


no image
PET/MRI: Observation of Non-Isotropic Positron Distribution in High Magnetic Fields and Its Diagnostic Impact

Kolb, A., Hofmann, M., Sauter, A., Liu, C., Schölkopf, B., Pichler, B.

2010 Nuclear Science Symposium and Medical Imaging Conference, 2010(M18-119):1, November 2010 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
Probabilistic Assignment of Chemical Shift Data for Semi-Automatic Amino Acid Recognition

Hooge, J.

11(10):30, 11th Conference of Junior Neuroscientists of T{\"u}bingen (NeNa), October 2010 (poster)

Abstract
manner. First the backbone resonances are assigned. This is usually achieved from sequential information provided by three chemical shifts: CA, CB and C’. Once the sequence is solved, the second assignment step takes place. For this purpose, the CA-CB and HA chemical shifts are used as a start point for assignment of the side chain resonances, thus connecting the backbone resonances to their respective side chains. This strategy is unfortunately limited by the size of the protein due to increasing signal overlap and missing signals. Therefore, amino acid recognition is in many cases not possible as the CA-CB chemical shift pattern is not sufficient to discriminate between the 20 amino acids. As a result, the first step of the strategy described above remains tedious and time consuming. The combination of modern NMR techniques with new spectrometers now provide information that was not always accessible in the past, due to sensitivity problems. These experiments can be applied efficiently to measure a protein size up to 45 kDa and furthermore provide a unique combination of sequential carbon spin system information. The assignment process can thus benefit from a maximum knowledge input, containing âallâ backbone and side chain chemical shifts as well as an immediate amino acid recognition from the side chain spin system. We propose to extend the software PASTA (Protein ASsignment by Threshold Accepting) to achieve a general sequential assignment of backbone and side-chain resonances in a semi- to fullautomatic per-residue approach. PASTA will offer the possibility to achieve the sequential assignment using any kind of chemical shifts (carbons and/or protons) that can provide sequential information combined with an amino acid recognition feature based on carbon spin system analysis.

ei

PDF [BibTex]

PDF [BibTex]


no image
Generalizing Demonstrated Actions in Manipulation Tasks

Kroemer, O., Detry, R., Piater, J., Peters, J.

IROS 2010 Workshop on Grasp Planning and Task Learning by Imitation, 2010, pages: 1, October 2010 (poster)

Abstract
Programming-by-demonstration promises to significantly reduce the burden of coding robots to perform new tasks. However, service robots will be presented with a variety of different situations that were not specifically demonstrated to it. In such cases, the robot must autonomously generalize its learned motions to these new situations. We propose a system that can generalize movements to new target locations and even new objects. The former is achieved by using a task-specific coordinate system together with dynamical systems motor primitives. Generalizing actions to new objects is a more complex problem, which we solve by treating it as a continuum-armed bandits problem. Using the bandits framework, we can efficiently optimize the learned action for a specific object. The proposed method was implemented on a real robot and succesfully adapted the grasping action to three different objects. Although we focus on grasping as an example of a task, the proposed methods are much more widely applicable to robot manipulation tasks.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Inhomogeneous Positron Range Effects in High Magnetic Fields might Cause Severe Artefacts in PET/MRI

Kolb, A., Hofmann, M., Sauter, A., Liu, C., Eriksson, L., Pichler, B.

(0305B), 2010 World Molecular Imaging Congress (WMIC), September 2010 (poster)

Abstract
The combination of PET and MRI is an emerging field of current research. It is known that the positron range is shortened in high magnetic fields (MF), leading to an improved resolution in PET images. Interestingly, only the fraction of positron range (PR) orthogonal to the MF is reduced and the fraction along the MF is not affected and yields to a non-isotropic count distribution. We measured the PR effect with PET isotopes like F-18, Cu-64, C-11, N-13 and Ga-68. A piece of paper (1 cm2) was soaked with each isotope and placed in the cFOV of a clinical 3T BrainPET/MR scanner. A polyethylene board (PE) was placed as a positron (β+) stopper with an axial distance of 3 cm from the soaked paper. The area under the peaks of one pixel wide profiles along the z-axis in coronal images was compared. Based on these measurements we confirmed our data in organic tissue. A larynx/trachea and lung of a butchered swine were injected with a mixture of NiSO4 for T1 MRI signals and Ga-68, simulating tumor lesions in the respiratory tract. The trachea/larynx were aligned in 35° to the MF lines and a small mass lesion was inserted to imitate a primary tracheal tumor whereas the larynx was injected submucosally in the lower medial part of the epiglottis. Reconstructed PET data show that the annihilated ratio of β+ at the origin position and in the PE depends on the isotope energy and the direction of the MF. The annihilation ratios of the source and PE are 52.4/47.6 (F-18), 57.5/42.5 (Cu-64), 43.7/56.7 (C-11), 31.1/68.9 (N-13) and 14.9/85.1 (Ga-68). In the swine larynx measurement, an artefact with approximately 39% of the lesion activity formed along MF lines 3cm away from the original injected position (fig.1). The data of the trachea showed two shine artefacts with a symmetric alignment along the MF lines. About 58% of the positrons annihilated at the lesion and 21% formed each artefact. The PR effects areminor in tissue of higher or equal density to water (0.096 cm-1). However, the effect is severe in low density tissue or air and might lead to misinterpretation of clinical data.

ei

Web [BibTex]

Web [BibTex]


no image
Reinforcement Learning by Relative Entropy Policy Search

Peters, J., Mülling, K., Altun, Y.

30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2010), 30, pages: 69, July 2010 (poster)

Abstract
Policy search is a successful approach to reinforcement learning. However, policy improvements often result in the loss of information. Hence, it has been marred by premature convergence and implausible solutions. As first suggested in the context of covariant policy gradients, many of these problems may be addressed by constraining the information loss. In this book chapter, we continue this path of reasoning and suggest the Relative Entropy Policy Search (REPS) method. The resulting method differs significantly from previous policy gradient approaches and yields an exact update step. It works well on typical reinforcement learning benchmark problems. We will also present a real-world applications where a robot employs REPS to learn how to return balls in a game of table tennis.

ei

PDF [BibTex]

PDF [BibTex]


no image
A Maximum Entropy Approach to Semi-supervised Learning

Erkan, A., Altun, Y.

30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2010), 30, pages: 80, July 2010 (poster)

Abstract
Maximum entropy (MaxEnt) framework has been studied extensively in supervised learning. Here, the goal is to find a distribution p that maximizes an entropy function while enforcing data constraints so that the expected values of some (pre-defined) features with respect to p match their empirical counterparts approximately. Using different entropy measures, different model spaces for p and different approximation criteria for the data constraints yields a family of discriminative supervised learning methods (e.g., logistic regression, conditional random fields, least squares and boosting). This framework is known as the generalized maximum entropy framework. Semi-supervised learning (SSL) has emerged in the last decade as a promising field that combines unlabeled data along with labeled data so as to increase the accuracy and robustness of inference algorithms. However, most SSL algorithms to date have had trade-offs, e.g., in terms of scalability or applicability to multi-categorical data. We extend the generalized MaxEnt framework to develop a family of novel SSL algorithms. Extensive empirical evaluation on benchmark data sets that are widely used in the literature demonstrates the validity and competitiveness of the proposed algorithms.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
The effect of positioning aids on PET quantification following MR-based attenuation correction (AC) in PET/MR imaging

Mantlik, F., Hofmann, M., Kupferschläger, J., Werner, M., Pichler, B., Beyer, T.

Journal of Nuclear Medicine, 51(Supplement 2):1418 , June 2010 (poster)

Abstract
Objectives: We study the quantitative effect of not accounting for the attenuation of patient positioning aids in combined PET/MR imaging. Methods: Positioning aids cannot be detected with conventional MR sequences. We mimic this effect using PET/CT data (Biograph HiRez16) with the foams removed from CT images prior to using them for CT-AC. PET/CT data were acquired using standard parameters (phantoms/patients): 120/140 kVp, 30/250 mAs, 5 mm slices, OSEM (4i, 8s, 5 mm filter) following CT-AC. First, a uniform 68Ge-cylinder was positioned centrally in the PET/CT and fixed with a vacuum mattress (10 cm thick). Second, the same cylinder was placed in 3 positioning aids from the PET/MR (BrainPET-3T). Third, 5 head/neck patients who were fixed in a vacuum mattress were selected. In all 3 studies PET recon post CT-AC based on measured CT images was used as the reference (mCT-AC). The PET/MR set-up was mimicked by segmenting the foam inserts from the measured CT images and setting their voxel values to -1000 HU (air). PET images were reconstructed using CT-AC with the segmented CT images (sCT-AC). PET images with mCT- and sCT-AC were compared. Results: sCT-AC underestimated PET voxel values in the phantom by 6.7% on average compared to mCT-AC with the vacuum mattress in place. 5% of the PET voxels were underestimated by >=10%. Not accounting for MR positioning aids during AC led to an underestimation of 2.8% following sCT-AC, with 5% of the PET voxels being underestimated by >=7% wrt mCT-AC. Preliminary evaluation of the patient data indicates a slightly higher bias from not accounting for patient positioning aids (mean: -9.1%, 5% percentile: -11.2%). Conclusions: A considerable and regionally variable underestimation of the PET activity following AC is observed when positioning aids are not accounted for. This bias may become relevant in neurological activation or dementia studies with PET/MR

ei

Web [BibTex]

Web [BibTex]


no image
Multi-task Learning for Zero Training Brain-Computer Interfaces

Alamgir, M., Grosse-Wentrup, M., Altun, Y.

4th International BCI Meeting, June 2010 (poster)

Abstract
Brain-computer interfaces (BCIs) are limited in their applicability in everyday settings by the current necessity to record subject-specific calibration data prior to actual use of the BCI for communication. In this work, we utilize the framework of multitask learning to construct a BCI that can be used without any subject-specific calibration process, i.e., with zero training data. In BCIs based on EEG or MEG, the predictive function of a subject's intention is commonly modeled as a linear combination of some features derived from spatial and spectral recordings. The coefficients of this combination correspond to the importance of the features for predicting the intention of the subject. These coefficients are usually learned separately for each subject due to inter-subject variability. Principle feature characteristics, however, are known to remain invariant across subject. For example, it is well known that in motor imagery paradigms spectral power in the mu- and beta frequency ranges (roughly 8-14 Hz and 20-30 Hz, respectively) over sensorimotor areas provides most information on a subject's intention. Based on this assumption, we define the intention prediction function as a combination of subject-invariant and subject-specific models, and propose a machine learning method that infers these models jointly using data from multiple subjects. This framework leads to an out-of-the-box intention predictor, where the subject-invariant model can be employed immediately for a subject with no prior data. We present a computationally efficient method to further improve this BCI to incorporate subject-specific variations as such data becomes available. To overcome the problem of high dimensional feature spaces in this context, we further present a new method for finding the relevance of different recording channels according to actions performed by subjects. Usually, the BCI feature representation is a concatenation of spectral features extracted from different channels. This representation, however, is redundant, as recording channels at different spatial locations typically measure overlapping sources within the brain due to volume conduction. We address this problem by assuming that the relevance of different spectral bands is invariant across channels, while learning different weights for each recording electrode. This framework allows us to significantly reduce the feature space dimensionality without discarding potentially useful information. Furthermore, the resulting out-of-the-box BCI can be adapted to different experimental setups, for example EEG caps with different numbers of channels, as long as there exists a mapping across channels in different setups. We demonstrate the feasibility of our approach on a set of experimental EEG data recorded during a standard two-class motor imagery paradigm from a total of ten healthy subjects. Specifically, we show that satisfactory classification results can be achieved with zero training data, and that combining prior recordings with subject-specific calibration data substantially outperforms using subject-specific data only.

ei

Web [BibTex]


no image
Causal Influence of Gamma Oscillations on Performance in Brain-Computer Interfaces

Grosse-Wentrup, M., Hill, J., Schölkopf, B.

4th International BCI Meeting0, June 2010 (poster)

Abstract
Background and Objective: While machine learning approaches have led to tremendous advances in brain-computer interfaces (BCIs) in recent years (cf. [1]), there still exists a large variation in performance across subjects. Furthermore, a significant proportion of subjects appears incapable of achieving above chance-level classification accuracy [2], which to date includes all subjects in a completely locked-in state that have been trained in BCI control. Understanding the reasons for this variation in performance arguably constitutes one of the most fundamental open questions in research on BCIs. Methods & Results Using a machine learning approach, we derive a trial-wise measure of how well EEG recordings can be classified as either left- or right-hand motor imagery. Specifically, we train a support vector machine (SVM) on log-bandpower features (7-40 Hz) derived from EEG channels after spatial filtering with a surface Laplacian, and then compute the trial-wise distance of the output of the SVM from the separating hyperplane using a cross-validation procedure. We then correlate this trial-wise performance measure, computed on EEG recordings of ten healthy subjects, with log-bandpower in the gamma frequency range (55-85 Hz), and demonstrate that it is positively correlated with frontal- and occipital gamma-power and negatively correlated with centro-parietal gamma-power. This correlation is shown to be highly significant on the group level as well as in six out of ten subjects on the single-subject level. We then utilize the framework for causal inference developed by Pearl, Spirtes and others [3,4] to present evidence that gamma-power is not only correlated with BCI performance but does indeed exert a causal influence on it. Discussion and Conclusions Our results indicate that successful execution of motor imagery, and hence reliable communication by means of a BCI based on motor imagery, requires a volitional shift of gamma-power from centro-parietal to frontal and occipital regions. As such, our results provide the first non-trivial explanation for the variation in BCI performance across and within subjects. As this topographical alteration in gamma-power is likely to correspond to a specific attentional shift, we propose to provide subjects with feedback on their topographical distribution of gamma-power in order to establish the attentional state required for successful execution of motor imagery.

ei

Web [BibTex]


no image
Solving large-scale nonnegative least-squares

Sra, S.

16th Conference of the International Linear Algebra Society (ILAS 2010), 16, pages: 19, June 2010, based on Joint work with Dongmin Kim and Inderjit Dhillon (poster)

Abstract
We study the fundamental problem of nonnegative least squares. This problem was apparently introduced by Lawson and Hanson [1] under the name NNLS. As is evident from its name, NNLS seeks least-squares solutions that are also nonnegative. Owing to its wide-applicability numerous algorithms have been derived for NNLS, beginning from the active-set approach of Lawson and Hanson [1] leading up to the sophisticated interior-point method of Bellavia et al. [2]. We present a new algorithm for NNLS that combines projected subgradients with the non-monotonic gradient descent idea of Barzilai and Borwein [3]. Our resulting algorithm is called BBSG, and we guarantee its convergence by exploiting properties of NNLS in conjunction with projected subgradients. BBSG is surprisingly simple and scales well to large problems. We substantiate our claims by empirically evaluating BBSG and comparing it with established convex solvers and specialized NNLS algorithms. The numerical results suggest that BBSG is a practical method for solving large-scale NNLS problems.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Simultaneous PET/MRI for the evaluation of hemato-oncological diseases with lower extremity manifestations

Sauter, A., Horger, M., Boss, A., Kolb, A., Mantlik, F., Kanz, L., Pfannenberg, C., Stegger, L., Claussen, C., Pichler, B.

Journal of Nuclear Medicine, 51(Supplement 2):1001 , June 2010 (poster)

Abstract
Objectives: The study purpose is the evaluation of patients, suffering from hemato-oncological disease with complications at the lower extremities, using simultaneous PET/MRI. Methods: Until now two patients (chronic active graft-versus-host-disease [GvHD], B-non Hodgkin lymphoma [B-NHL]) before and after therapy were examined in a 3-Tesla-BrainPET/MRI hybrid system following F-18-FDG-PET/CT. Simultaneous static PET (1200 sec.) and MRI scans (T1WI, T2WI, post-CA) were acquired. Results: Initial results show the feasibility of using hybrid PET/MRI-technology for musculoskeletal imaging of the lower extremities. Simultaneous PET and MRI could be acquired in diagnostic quality. Before treatment our patient with GvHD had a high fascia and muscle FDG uptake, possibly due to muscle encasement. T2WI and post gadolinium T1WI revealed a fascial thickening and signs of inflammation. After therapy with steroids followed by imatinib the patient’s symptoms improved while, the muscular FDG uptake droped whereas the MRI signal remained unchanged. We assume that fascial elasticity improved during therapy despite persistance of fascial thickening. The examination of the second patient with B-NHL manifestation in the tibia showed a significant signal and uptake decrease in the bone marrow and surrounding lesions in both, MRI and PET after therapy with rituximab. The lack of residual FDG-uptake proved superior to MRI information alone helping for exclusion of vital tumor. Conclusions: Combined PET/MRI is a powerful tool to monitor diseases requiring high soft tissue contrast along with molecular information from the FDG uptake.

ei

Web [BibTex]

Web [BibTex]


no image
Solving large-scale nonnegative least squares using an adaptive non-monotonic method

Sra, S., Kim, D., Dhillon, I.

24th European Conference on Operational Research (EURO 2010), 24, pages: 223, April 2010 (poster)

Abstract
We present an efficient algorithm for large-scale non-negative least-squares (NNLS). We solve NNLS by extending the unconstrained quadratic optimization method of Barzilai and Borwein (BB) to handle nonnegativity constraints. Our approach is simple yet efficient. It differs from other constrained BB variants as: (i) it uses a specific subset of variables for computing BB steps; and (ii) it scales these steps adaptively to ensure convergence. We compare our method with both established convex solvers and specialized NNLS methods, and observe highly competitive empirical performance.

ei

PDF [BibTex]

PDF [BibTex]


no image
Sparse regression via a trust-region proximal method

Kim, D., Sra, S., Dhillon, I.

24th European Conference on Operational Research (EURO 2010), 24, pages: 278, April 2010 (poster)

Abstract
We present a method for sparse regression problems. Our method is based on the nonsmooth trust-region framework that minimizes a sum of smooth convex functions and a nonsmooth convex regularizer. By employing a separable quadratic approximation to the smooth part, the method enables the use of proximity operators, which in turn allow tackling the nonsmooth part efficiently. We illustrate our method by implementing it for three important sparse regression problems. In experiments with synthetic and real-world large-scale data, our method is seen to be competitive, robust, and scalable.

ei

PDF [BibTex]

PDF [BibTex]


no image
PAC-Bayesian Bounds for Discrete Density Estimation and Co-clustering Analysis

Seldin, Y., Tishby, N.

Workshop "Foundations and New Trends of PAC Bayesian Learning", 2010, March 2010 (poster)

Abstract
We applied PAC-Bayesian framework to derive gen- eralization bounds for co-clustering1. The analysis yielded regularization terms that were absent in the preceding formulations of this task. The bounds sug- gested that co-clustering should optimize a trade-off between its empirical performance and the mutual in- formation that the cluster variables preserve on row and column indices. Proper regularization enabled us to achieve state-of-the-art results in prediction of the missing ratings in the MovieLens collaborative filtering dataset. In addition a PAC-Bayesian bound for discrete den- sity estimation was derived. We have shown that the PAC-Bayesian bound for classification is a spe- cial case of the PAC-Bayesian bound for discrete den- sity estimation. We further introduced combinatorial priors to PAC-Bayesian analysis. The combinatorial priors are more appropriate for discrete domains, as opposed to Gaussian priors, the latter of which are suitable for continuous domains. It was shown that combinatorial priors lead to regularization terms in the form of mutual information.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning Continuous Grasp Affordances by Sensorimotor Exploration

Detry, R., Baseski, E., Popovic, M., Touati, Y., Krüger, N., Kroemer, O., Peters, J., Piater, J.

In From Motor Learning to Interaction Learning in Robots, pages: 451-465, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
We develop means of learning and representing object grasp affordances probabilistically. By grasp affordance, we refer to an entity that is able to assess whether a given relative object-gripper configuration will yield a stable grasp. These affordances are represented with grasp densities, continuous probability density functions defined on the space of 3D positions and orientations. Grasp densities are registered with a visual model of the object they characterize. They are exploited by aligning them to a target object using visual pose estimation. Grasp densities are refined through experience: A robot “plays” with an object by executing grasps drawn randomly for the object’s grasp density. The robot then uses the outcomes of these grasps to build a richer density through an importance sampling mechanism. Initial grasp densities, called hypothesis densities, are bootstrapped from grasps collected using a motion capture system, or from grasps generated from the visual model of the object. Refined densities, called empirical densities, represent affordances that have been confirmed through physical experience. The applicability of our method is demonstrated by producing empirical densities for two object with a real robot and its 3-finger hand. Hypothesis densities are created from visual cues and human demonstration.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Imitation and Reinforcement Learning for Motor Primitives with Perceptual Coupling

Kober, J., Mohler, B., Peters, J.

In From Motor Learning to Interaction Learning in Robots, pages: 209-225, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
Traditional motor primitive approaches deal largely with open-loop policies which can only deal with small perturbations. In this paper, we present a new type of motor primitive policies which serve as closed-loop policies together with an appropriate learning algorithm. Our new motor primitives are an augmented version version of the dynamical system-based motor primitives [Ijspeert et al(2002)Ijspeert, Nakanishi, and Schaal] that incorporates perceptual coupling to external variables. We show that these motor primitives can perform complex tasks such as Ball-in-a-Cup or Kendama task even with large variances in the initial conditions where a skilled human player would be challenged. We initialize the open-loop policies by imitation learning and the perceptual coupling with a handcrafted solution. We first improve the open-loop policies and subsequently the perceptual coupling using a novel reinforcement learning method which is particularly well-suited for dynamical system-based motor primitives.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
From Motor Learning to Interaction Learning in Robots

Sigaud, O., Peters, J.

In From Motor Learning to Interaction Learning in Robots, pages: 1-12, Studies in Computational Intelligence ; 264, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
The number of advanced robot systems has been increasing in recent years yielding a large variety of versatile designs with many degrees of freedom. These robots have the potential of being applicable in uncertain tasks outside wellstructured industrial settings. However, the complexity of both systems and tasks is often beyond the reach of classical robot programming methods. As a result, a more autonomous solution for robot task acquisition is needed where robots adaptively adjust their behaviour to the encountered situations and required tasks. Learning approaches pose one of the most appealing ways to achieve this goal. However, while learning approaches are of high importance for robotics, we cannot simply use off-the-shelf methods from the machine learning community as these usually do not scale into the domains of robotics due to excessive computational cost as well as a lack of scalability. Instead, domain appropriate approaches are needed. In this book, we focus on several core domains of robot learning. For accurate task execution, we need motor learning capabilities. For fast learning of the motor tasks, imitation learning offers the most promising approach. Self improvement requires reinforcement learning approaches that scale into the domain of complex robots. Finally, for efficient interaction of humans with robot systems, we will need a form of interaction learning. This chapter provides a general introduction to these issues and briefly presents the contributions of the subsequent chapters to the corresponding research topics.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Real-Time Local GP Model Learning

Nguyen-Tuong, D., Seeger, M., Peters, J.

In From Motor Learning to Interaction Learning in Robots, 264, pages: 193-207, Studies in Computational Intelligence, (Editors: Sigaud, O. and Peters, J.), Springer, Berlin, Germany, January 2010 (inbook)

Abstract
For many applications in robotics, accurate dynamics models are essential. However, in some applications, e.g., in model-based tracking control, precise dynamics models cannot be obtained analytically for sufficiently complex robot systems. In such cases, machine learning offers a promising alternative for approximating the robot dynamics using measured data. However, standard regression methods such as Gaussian process regression (GPR) suffer from high computational complexity which prevents their usage for large numbers of samples or online learning to date. In this paper, we propose an approximation to the standard GPR using local Gaussian processes models inspired by [Vijayakumar et al(2005)Vijayakumar, D’Souza, and Schaal, Snelson and Ghahramani(2007)]. Due to reduced computational cost, local Gaussian processes (LGP) can be applied for larger sample-sizes and online learning. Comparisons with other nonparametric regressions, e.g., standard GPR, support vector regression (SVR) and locally weighted proje ction regression (LWPR), show that LGP has high approximation accuracy while being sufficiently fast for real-time online learning.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Machine Learning Methods for Automatic Image Colorization

Charpiat, G., Bezrukov, I., Hofmann, M., Altun, Y., Schölkopf, B.

In Computational Photography: Methods and Applications, pages: 395-418, Digital Imaging and Computer Vision, (Editors: Lukac, R.), CRC Press, Boca Raton, FL, USA, 2010 (inbook)

Abstract
We aim to color greyscale images automatically, without any manual intervention. The color proposition could then be interactively corrected by user-provided color landmarks if necessary. Automatic colorization is nontrivial since there is usually no one-to-one correspondence between color and local texture. The contribution of our framework is that we deal directly with multimodality and estimate, for each pixel of the image to be colored, the probability distribution of all possible colors, instead of choosing the most probable color at the local level. We also predict the expected variation of color at each pixel, thus defining a non-uniform spatial coherency criterion. We then use graph cuts to maximize the probability of the whole colored image at the global level. We work in the L-a-b color space in order to approximate the human perception of distances between colors, and we use machine learning tools to extract as much information as possible from a dataset of colored examples. The resulting algorithm is fast, designed to be more robust to texture noise, and is above all able to deal with ambiguity, in contrary to previous approaches.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning the Reward Model of Dialogue POMDPs

Boularias, A., Chinaei, H., Chaib-Draa, B.

NIPS Workshop on Machine Learning for Assistive Technology (MLAT-2010), 2010 (poster)

ei

[BibTex]

[BibTex]


no image
Approaches Based on Support Vector Machine to Classification of Remote Sensing Data

Bruzzone, L., Persello, C.

In Handbook of Pattern Recognition and Computer Vision, pages: 329-352, (Editors: Chen, C.H.), ICP, London, UK, 2010 (inbook)

Abstract
This chapter presents an extensive and critical review on the use of kernel methods and in particular of support vector machines (SVMs) in the classification of remote-sensing (RS) data. The chapter recalls the mathematical formulation and the main theoretical concepts related to SVMs, and discusses the motivations at the basis of the use of SVMs in remote sensing. A review on the main applications of SVMs in classification of remote sensing is given, presenting a literature survey on the use of SVMs for the analysis of different kinds of RS images. In addition, the most recent methodological developments related to SVM-based classification techniques in RS are illustrated by focusing on semisupervised, domain adaptation, and context sensitive approaches. Finally, the most promising research directions on SVM in RS are identified and discussed.

ei

Web [BibTex]

Web [BibTex]


no image
Erste Erfahrungen bei der Beurteilung hämato-onkologischer Krankheitsmanifestationen an den Extremitäten mit einem PET/MRT-Hybridsystem.

Sauter, A., Boss, A., Kolb, A., Mantlik, F., Bethge, W., Kanz, L., Pfannenberg, C., Stegger, L., Pichler, B., Claussen, C., Horger, M.

Thieme Verlag, Stuttgart, Germany, 91. Deutscher R{\"o}ntgenkongress, 2010 (poster)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Nanohandling robot cells

Fatikow, Sergej, Wich, Thomas, Dahmen, Christian, Jasper, Daniel, Stolle, Christian, Eichhorn, Volkmar, Hagemann, Saskia, Weigel-Jech, Michael

In Handbook of Nanophysics: Nanomedicine and Nanorobotics, pages: 1-31, CRC Press, 2010 (incollection)

pi

[BibTex]

[BibTex]


no image
Locally weighted regression for control

Ting, J., Vijayakumar, S., Schaal, S.

In Encyclopedia of Machine Learning, pages: 613-624, (Editors: Sammut, C.;Webb, G. I.), Springer, 2010, clmc (inbook)

Abstract
This is article addresses two topics: learning control and locally weighted regression.

am

link (url) [BibTex]

link (url) [BibTex]


no image
Physisorption in porous materials

Hirscher, M., Panella, B.

In Handbook of Hydrogen Storage, pages: 39-62, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010 (incollection)

mms

[BibTex]

[BibTex]


no image
Adsorption technologies

Schmitz, B., Hirscher, M.

In Hydrogen and Fuel Cells, pages: 431-445, WILEY-VCH, Weinheim, 2010 (incollection)

mms

[BibTex]

[BibTex]


no image
Atomic-Force-Microscopy-Based Nanomanipulation Systems

Onal, C. D., Ozcan, O., Sitti, M.

In Handbook of Nanophysics: Nanomedicine and Nanorobotics, pages: 1-15, CRC Press, 2010 (incollection)

pi

[BibTex]

[BibTex]


no image
Taming the Beast: Guided Self-organization of Behavior in Autonomous Robots

Martius, G., Herrmann, J. M.

In From Animals to Animats 11, 6226, pages: 50-61, LNCS, Springer, 2010 (incollection)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]