Header logo is


2017


no image
Computing with Uncertainty

Hennig, P.

2017 (mpi_year_book)

Abstract
Machine learning requires computer hardware to reliable and efficiently compute estimations for ever more complex and fundamentally incomputable quantities. A research team at MPI for Intelligent Systems in Tübingen develops new algorithms which purposely lower the precision of computations and return an explicit measure of uncertainty over the correct result alongside the estimate. Doing so allows for more flexible management of resources, and increases the reliability of intelligent systems.

link (url) DOI [BibTex]


no image
Biomechanics and Locomotion Control in Legged Animals and Legged Robots

Sproewitz, A., Heim, S.

2017 (mpi_year_book)

Abstract
An animal's running gait is dynamic, efficient, elegant, and adaptive. We see locomotion in animals as an orchestrated interplay of the locomotion apparatus, interacting with its environment. The Dynamic Locomotion Group at the Max Planck Institute for Intelligent Systems in Stuttgart develops novel legged robots to decipher aspects of biomechanics and neuromuscular control of legged locomotion in animals, and to understand general principles of locomotion.

link (url) DOI [BibTex]


Thumb xl toc image patent
Methods, apparatuses, and systems for micromanipulation with adhesive fibrillar structures

Sitti, M., Mengüç, Y.

US Patent 9,731,422, 2017 (patent)

Abstract
The present invention are methods for fabrication of micro- and/or nano-scale adhesive fibers and their use for movement and manipulation of objects. Further disclosed is a method of manipulating a part by providing a manipulation device with a plurality of fibers, where each fiber has a tip with a flat surface that is parallel to a backing layer, contacting the flat surfaces on an object, moving the object to a new location, then disengaging the tips from the object.

pi

link (url) [BibTex]


Thumb xl paraview preview
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]

2013


Thumb xl imgf0006
Human Pose Calculation from Optical Flow Data

Black, M., Loper, M., Romero, J., Zuffi, S.

European Patent Application EP 2843621 , August 2013 (patent)

ps

Google Patents [BibTex]

2013


Google Patents [BibTex]


no image
Proceedings of the 10th European Workshop on Reinforcement Learning, Volume 24

Deisenroth, M., Szepesvári, C., Peters, J.

pages: 173, JMLR, European Workshop On Reinforcement Learning, EWRL, 2013 (proceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Perceiving Systems – Computers that see

Gehler, P. V.

2013 (mpi_year_book)

Abstract
Our research goal is to define in a mathematical precise way how visual perception works. We want to describe how intelligent systems understand images. To this end we study probabilistic models and statistical learning. Encoding prior knowledge about the world is complemented with automatic learning from training data. One aspect is being able to identify physical factors in images, such as lighting, geometry, and materials. Furthermore we want to automatically recognize and give names to objects and persons in images and understand the scene as a whole.

link (url) [BibTex]


no image
Being small, being smart

Liu, Na

2013 (mpi_year_book)

Abstract
Metallic nanostructures feature plasmonic resonances which spatially confine light on the nanometer scale. In the ultimate limit of a single nanostructure, the electromagnetic field can be strongly concentrated in a volume of only a few hundred nm3 or less. We utilize such plasmonic focusing for hydrogen detection at the single particle level, which avoids any inhomogeneous broadening and statistical effects that would occur in sensors based on nanoparticle ensembles. This concept paves the road towards the observation of single catalytic processes in nanoreactors.

link (url) [BibTex]

link (url) [BibTex]