Header logo is


2017


no image
Computing with Uncertainty

Hennig, P.

2017 (mpi_year_book)

Abstract
Machine learning requires computer hardware to reliable and efficiently compute estimations for ever more complex and fundamentally incomputable quantities. A research team at MPI for Intelligent Systems in Tübingen develops new algorithms which purposely lower the precision of computations and return an explicit measure of uncertainty over the correct result alongside the estimate. Doing so allows for more flexible management of resources, and increases the reliability of intelligent systems.

link (url) DOI [BibTex]


no image
Biomechanics and Locomotion Control in Legged Animals and Legged Robots

Sproewitz, A., Heim, S.

2017 (mpi_year_book)

Abstract
An animal's running gait is dynamic, efficient, elegant, and adaptive. We see locomotion in animals as an orchestrated interplay of the locomotion apparatus, interacting with its environment. The Dynamic Locomotion Group at the Max Planck Institute for Intelligent Systems in Stuttgart develops novel legged robots to decipher aspects of biomechanics and neuromuscular control of legged locomotion in animals, and to understand general principles of locomotion.

link (url) DOI [BibTex]


Thumb xl paraview preview
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]

2016


no image
Interface-controlled phenomena in nanomaterials

Mittemeijer, Eric J.; Wang, Zumin

2016 (mpi_year_book)

Abstract
Nanosized material systems characteristically exhibit an excessively high internal interface density. A series of previously unknown phenomena in nanomaterials have been disclosed that are fundamentally caused by the presence of interfaces. Thus anomalously large and small lattice parameters in nanocrystalline metals, quantum stress oscillations in growing nanofilms, and extraordinary atomic mobility at ultralow temperatures have been observed and explained. The attained understanding for these new phenomena can lead to new, sophisticated applications of nanomaterials in advanced technologies.

link (url) [BibTex]

2016


link (url) [BibTex]


no image
Robots learn how to see

Geiger, A.

2016 (mpi_year_book)

Abstract
Autonomous vehicles and intelligent service robots could soon contribute to making our lives more pleasant and secure. However, for autonomous operation such systems first need to learn the perception process itself. This involves measuring distances and motions, detecting objects and interpreting the threedimensional world as a whole. While humans perceive their environment with seemingly little efforts, computers first need to be trained for these tasks. Our research is concerned with developing mathematical models which allow computers to robustly perceive their environment.

link (url) DOI [BibTex]

2012


no image
Brain-computer interfaces – a novel type of communication

Grosse-Wentrup, M.

2012 (mpi_year_book)

Abstract
Brain-computer interfaces (BCIs) provide a new means of communication that does not rely on volitional muscle control. This may provide the capability to locked-in patients, e.g., those suffering from amyotrophic lateral sclerosis, to maintain interactions with their environment. Besides providing communication capabilities to locked-in patients, BCIs may further prove to have a beneficial impact on stroke rehabilitation. In this article, the state-of-the-art of BCIs is reviewed and current research questions are discussed.

link (url) [BibTex]


no image
From artificial flagella to medical microbots – the start of a "phantastic voyage"

Fischer, P.

2012 (mpi_year_book)

Abstract
There have been numerous speculations in scientific publications and the popular media about wirelessly controlled microrobots (microbots) navigating the human body. Such micro-agents could revolutionize minimally invasive medical procedures. Using physical vapor deposition we grow billions of micron-sized colloidal screw-propellers on a wafer. These chiral mesoscopic screws can be magnetized and moved through solution under computer control. The screw-propellers resemble artificial flagella and are the only ‘microbots’ to date that can be fully controlled in solution at micron length scales.

link (url) [BibTex]