Header logo is


2017


no image
Improving performance of linear field generation with multi-coil setup by optimizing coils position

Aghaeifar, A., Loktyushin, A., Eschelbach, M., Scheffler, K.

Magnetic Resonance Materials in Physics, Biology and Medicine, 30(Supplement 1):S259, 34th Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), October 2017 (poster)

ei

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]


no image
Estimating B0 inhomogeneities with projection FID navigator readouts

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Image Quality Improvement by Applying Retrospective Motion Correction on Quantitative Susceptibility Mapping and R2*

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl fig1
Chapter 8 - Micro- and nanorobots in Newtonian and biological viscoelastic fluids

Palagi, S., (Walker) Schamel, D., Qiu, T., Fischer, P.

In Microbiorobotics, pages: 133 - 162, 8, Micro and Nano Technologies, Second edition, Elsevier, Boston, March 2017 (incollection)

Abstract
Swimming microorganisms are a source of inspiration for small scale robots that are intended to operate in fluidic environments including complex biomedical fluids. Nature has devised swimming strategies that are effective at small scales and at low Reynolds number. These include the rotary corkscrew motion that, for instance, propels a flagellated bacterial cell, as well as the asymmetric beat of appendages that sperm cells or ciliated protozoa use to move through fluids. These mechanisms can overcome the reciprocity that governs the hydrodynamics at small scale. The complex molecular structure of biologically important fluids presents an additional challenge for the effective propulsion of microrobots. In this chapter it is shown how physical and chemical approaches are essential in realizing engineered abiotic micro- and nanorobots that can move in biomedically important environments. Interestingly, we also describe a microswimmer that is effective in biological viscoelastic fluids that does not have a natural analogue.

pf

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl appealingavatars
Appealing Avatars from 3D Body Scans: Perceptual Effects of Stylization

Fleming, R., Mohler, B. J., Romero, J., Black, M. J., Breidt, M.

In Computer Vision, Imaging and Computer Graphics Theory and Applications: 11th International Joint Conference, VISIGRAPP 2016, Rome, Italy, February 27 – 29, 2016, Revised Selected Papers, pages: 175-196, Springer International Publishing, 2017 (inbook)

Abstract
Using styles derived from existing popular character designs, we present a novel automatic stylization technique for body shape and colour information based on a statistical 3D model of human bodies. We investigate whether such stylized body shapes result in increased perceived appeal with two different experiments: One focuses on body shape alone, the other investigates the additional role of surface colour and lighting. Our results consistently show that the most appealing avatar is a partially stylized one. Importantly, avatars with high stylization or no stylization at all were rated to have the least appeal. The inclusion of colour information and improvements to render quality had no significant effect on the overall perceived appeal of the avatars, and we observe that the body shape primarily drives the change in appeal ratings. For body scans with colour information, we found that a partially stylized avatar was perceived as most appealing.

ps

publisher site pdf DOI [BibTex]

publisher site pdf DOI [BibTex]


no image
Robot Learning

Peters, J., Lee, D., Kober, J., Nguyen-Tuong, D., Bagnell, J., Schaal, S.

In Springer Handbook of Robotics, pages: 357-394, 15, 2nd, (Editors: Siciliano, Bruno and Khatib, Oussama), Springer International Publishing, 2017 (inbook)

am ei

Project Page [BibTex]

Project Page [BibTex]


Thumb xl gcpr2017 nugget
Learning to Filter Object Detections

Prokudin, S., Kappler, D., Nowozin, S., Gehler, P.

In Pattern Recognition: 39th German Conference, GCPR 2017, Basel, Switzerland, September 12–15, 2017, Proceedings, pages: 52-62, Springer International Publishing, Cham, 2017 (inbook)

Abstract
Most object detection systems consist of three stages. First, a set of individual hypotheses for object locations is generated using a proposal generating algorithm. Second, a classifier scores every generated hypothesis independently to obtain a multi-class prediction. Finally, all scored hypotheses are filtered via a non-differentiable and decoupled non-maximum suppression (NMS) post-processing step. In this paper, we propose a filtering network (FNet), a method which replaces NMS with a differentiable neural network that allows joint reasoning and re-scoring of the generated set of hypotheses per image. This formulation enables end-to-end training of the full object detection pipeline. First, we demonstrate that FNet, a feed-forward network architecture, is able to mimic NMS decisions, despite the sequential nature of NMS. We further analyze NMS failures and propose a loss formulation that is better aligned with the mean average precision (mAP) evaluation metric. We evaluate FNet on several standard detection datasets. Results surpass standard NMS on highly occluded settings of a synthetic overlapping MNIST dataset and show competitive behavior on PascalVOC2007 and KITTI detection benchmarks.

ps

Paper link (url) DOI Project Page [BibTex]

Paper link (url) DOI Project Page [BibTex]


no image
Policy Gradient Methods

Peters, J., Bagnell, J.

In Encyclopedia of Machine Learning and Data Mining, pages: 982-985, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Unsupervised clustering of EOG as a viable substitute for optical eye-tracking

Flad, N., Fomina, T., Bülthoff, H. H., Chuang, L. L.

In First Workshop on Eye Tracking and Visualization (ETVIS 2015), pages: 151-167, Mathematics and Visualization, (Editors: Burch, M., Chuang, L., Fisher, B., Schmidt, A., and Weiskopf, D.), Springer, 2017 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Statistical Asymmetries Between Cause and Effect

Janzing, D.

In Time in Physics, pages: 129-139, Tutorials, Schools, and Workshops in the Mathematical Sciences, (Editors: Renner, Renato and Stupar, Sandra), Springer International Publishing, Cham, 2017 (inbook)

ei

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Robot Learning

Peters, J., Tedrake, R., Roy, N., Morimoto, J.

In Encyclopedia of Machine Learning and Data Mining, pages: 1106-1109, 2nd, (Editors: Sammut, Claude and Webb, Geoffrey I.), Springer US, 2017 (inbook)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl paraview preview
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]


Thumb xl auroteaser
Decentralized Simultaneous Multi-target Exploration using a Connected Network of Multiple Robots

Nestmeyer, T., Robuffo Giordano, P., Bülthoff, H. H., Franchi, A.

In pages: 989-1011, Autonomous Robots, 2017 (incollection)

ps

[BibTex]

[BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

ESI Systems Neuroscience Conference (ESI-SyNC 2017): Principles of Structural and Functional Connectivity, 2017 (poster)

ei

[BibTex]

[BibTex]


no image
Momentum-Centered Control of Contact Interactions

Righetti, L., Herzog, A.

In Geometric and Numerical Foundations of Movements, 117, pages: 339-359, Springer Tracts in Advanced Robotics, Springer, Cham, 2017 (incollection)

mg

link (url) [BibTex]

link (url) [BibTex]

2013


no image
A Review of Performance Variations in SMR-Based Brain–Computer Interfaces (BCIs)

Grosse-Wentrup, M., Schölkopf, B.

In Brain-Computer Interface Research, pages: 39-51, 4, SpringerBriefs in Electrical and Computer Engineering, (Editors: Guger, C., Allison, B. Z. and Edlinger, G.), Springer, 2013 (inbook)

ei

PDF DOI [BibTex]

2013


PDF DOI [BibTex]


no image
Coupling between spiking activity and beta band spatio-temporal patterns in the macaque PFC

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

43rd Annual Meeting of the Society for Neuroscience (Neuroscience), 2013 (poster)

ei

[BibTex]

[BibTex]


no image
Gaussian Process Vine Copulas for Multivariate Dependence

Lopez-Paz, D., Hernandez-Lobato, J., Ghahramani, Z.

International Conference on Machine Learning (ICML), 2013 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Domain Generalization via Invariant Feature Representation

Muandet, K., Balduzzi, D., Schölkopf, B.

30th International Conference on Machine Learning (ICML2013), 2013 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
Semi-supervised learning in causal and anticausal settings

Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.

In Empirical Inference, pages: 129-141, 13, Festschrift in Honor of Vladimir Vapnik, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

ei

DOI [BibTex]

DOI [BibTex]


no image
Analyzing locking of spikes to spatio-temporal patterns in the macaque prefrontal cortex

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N., Besserve, M.

Bernstein Conference, 2013 (poster)

ei

DOI [BibTex]

DOI [BibTex]


no image
Tractable large-scale optimization in machine learning

Sra, S.

In Tractability: Practical Approaches to Hard Problems, pages: 202-230, 7, (Editors: Bordeaux, L., Hamadi , Y., Kohli, P. and Mateescu, R. ), Cambridge University Press , 2013 (inbook)

ei

[BibTex]

[BibTex]


no image
One-class Support Measure Machines for Group Anomaly Detection

Muandet, K., Schölkopf, B.

29th Conference on Uncertainty in Artificial Intelligence (UAI), 2013 (poster)

ei

PDF [BibTex]

PDF [BibTex]


no image
The Randomized Dependence Coefficient

Lopez-Paz, D., Hennig, P., Schölkopf, B.

Neural Information Processing Systems (NIPS), 2013 (poster)

ei pn

PDF [BibTex]

PDF [BibTex]


no image
Characterization of different types of sharp-wave ripple signatures in the CA1 of the macaque hippocampus

Ramirez-Villegas, J., Logothetis, N., Besserve, M.

4th German Neurophysiology PhD Meeting Networks, 2013 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
On the Relations and Differences between Popper Dimension, Exclusion Dimension and VC-Dimension

Seldin, Y., Schölkopf, B.

In Empirical Inference - Festschrift in Honor of Vladimir N. Vapnik, pages: 53-57, 6, (Editors: Schölkopf, B., Luo, Z. and Vovk, V.), Springer, 2013 (inbook)

ei

[BibTex]

[BibTex]


no image
Behavior as broken symmetry in embodied self-organizing robots

Der, R., Martius, G.

In Advances in Artificial Life, ECAL 2013, pages: 601-608, MIT Press, 2013 (incollection)

al

[BibTex]

[BibTex]


no image
Using Torque Redundancy to Optimize Contact Forces in Legged Robots

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.

In Redundancy in Robot Manipulators and Multi-Robot Systems, 57, pages: 35-51, Lecture Notes in Electrical Engineering, Springer Berlin Heidelberg, 2013 (incollection)

Abstract
The development of legged robots for complex environments requires controllers that guarantee both high tracking performance and compliance with the environment. More specifically the control of contact interaction with the environment is of crucial importance to ensure stable, robust and safe motions. In the following, we present an inverse dynamics controller that exploits torque redundancy to directly and explicitly minimize any combination of linear and quadratic costs in the contact constraints and in the commands. Such a result is particularly relevant for legged robots as it allows to use torque redundancy to directly optimize contact interactions. For example, given a desired locomotion behavior, it can guarantee the minimization of contact forces to reduce slipping on difficult terrains while ensuring high tracking performance of the desired motion. The proposed controller is very simple and computationally efficient, and most importantly it can greatly improve the performance of legged locomotion on difficult terrains as can be seen in the experimental results.

am mg

link (url) [BibTex]

link (url) [BibTex]


Thumb xl houghforest
Class-Specific Hough Forests for Object Detection

Gall, J., Lempitsky, V.

In Decision Forests for Computer Vision and Medical Image Analysis, pages: 143-157, 11, (Editors: Criminisi, A. and Shotton, J.), Springer, 2013 (incollection)

ps

code Project Page [BibTex]

code Project Page [BibTex]

2009


no image
Clinical PET/MRI-System and Its Applications with MRI Based Attenuation Correction

Kolb, A., Hofmann, M., Sossi, V., Wehrl, H., Sauter, A., Schmid, A., Schlemmer, H., Claussen, C., Pichler, B.

IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009), 2009, pages: 1, October 2009 (poster)

Abstract
Clinical PET/MRI is an emerging new hybrid imaging modality. In addition to provide an unique possibility for multifunctional imaging with temporally and spatially matched data, it also provides anatomical information that can also be used for attenuation correction with no radiation exposure to the subjects. A plus of combined compared to sequential PET and MR imaging is the reduction of total scan time. Here we present our initial experience with a hybrid brain PET/MRI system. Due to the ethical approval patient scans could only be performed after a diagnostic PET/CT. We estimate that in approximately 50% of the cases PET/MRI was of superior diagnostic value compared to PET/CT and was able to provide additional information, such as DTI, spectroscopy and Time Of Flight (TOF) angiography. Here we present 3 patient cases in oncology, a retropharyngeal carcinoma in neurooncology, a relapsing meningioma and in neurology a pharyngeal carcinoma in addition to an infraction of the right hemisphere. For quantitative PET imaging attenuation correction is obligatory. In current PET/MRI setup we used our MRI based atlas method for calculating the mu-map for attenuation correction. MR-based attenuation correction accuracy was quantitatively compared to CT-based PET attenuation correction. Extensive studies to assess potential mutual interferences between PET and MR imaging modalities as well as NEMA measurements have been performed. The first patient studies as well as the phantom tests clearly demonstrated the overall good imaging performance of this first human PET/MRI system. Ongoing work concentrates on advanced normalization and reconstruction methods incorporating count-rate based algorithms.

ei

Web [BibTex]

2009


Web [BibTex]


no image
A flowering-time gene network model for association analysis in Arabidopsis thaliana

Klotzbücher, K., Kobayashi, Y., Shervashidze, N., Borgwardt, K., Weigel, D.

2009(39):95-96, German Conference on Bioinformatics (GCB '09), September 2009 (poster)

Abstract
In our project we want to determine a set of single nucleotide polymorphisms (SNPs), which have a major effect on the flowering time of Arabidopsis thaliana. Instead of performing a genome-wide association study on all SNPs in the genome of Arabidopsis thaliana, we examine the subset of SNPs from the flowering-time gene network model. We are interested in how the results of the association study vary when using only the ascertained subset of SNPs from the flowering network model, and when additionally using the information encoded by the structure of the network model. The network model is compiled from the literature by manual analysis and contains genes which have been found to affect the flowering time of Arabidopsis thaliana [Far+08; KW07]. The genes in this model are annotated with the SNPs that are located in these genes, or in near proximity to them. In a baseline comparison between the subset of SNPs from the graph and the set of all SNPs, we omit the structural information and calculate the correlation between the individual SNPs and the flowering time phenotype by use of statistical methods. Through this we can determine the subset of SNPs with the highest correlation to the flowering time. In order to further refine this subset, we include the additional information provided by the network structure by conducting a graph-based feature pre-selection. In the further course of this project we want to validate and examine the resulting set of SNPs and their corresponding genes with experimental methods.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Initial Data from a first PET/MRI-System and its Applications in Clinical Studies Using MRI Based Attenuation Correction

Kolb, A., Hofmann, M., Sossi, V., Wehrl, H., Sauter, A., Schmid, A., Judenhofer, M., Schlemmer, H., Claussen, C., Pichler, B.

2009 World Molecular Imaging Congress, 2009, pages: 1200, September 2009 (poster)

ei

Web [BibTex]

Web [BibTex]


no image
A High-Speed Object Tracker from Off-the-Shelf Components

Lampert, C., Peters, J.

First IEEE Workshop on Computer Vision for Humanoid Robots in Real Environments at ICCV 2009, 1, pages: 1, September 2009 (poster)

Abstract
We introduce RTblob, an open-source real-time vision system for 3D object detection that achieves over 200 Hz tracking speed with only off-the-shelf hardware component. It allows fast and accurate tracking of colored objects in 3D without expensive and often custom-built hardware, instead making use of the PC graphics cards for the necessary image processing operations.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Estimating Critical Stimulus Features from Psychophysical Data: The Decision-Image Technique Applied to Human Faces

Macke, J., Wichmann, F.

Journal of Vision, 9(8):31, 9th Annual Meeting of the Vision Sciences Society (VSS), August 2009 (poster)

Abstract
One of the main challenges in the sensory sciences is to identify the stimulus features on which the sensory systems base their computations: they are a pre-requisite for computational models of perception. We describe a technique---decision-images--- for extracting critical stimulus features based on logistic regression. Rather than embedding the stimuli in noise, as is done in classification image analysis, we want to infer the important features directly from physically heterogeneous stimuli. A Decision-image not only defines the critical region-of-interest within a stimulus but is a quantitative template which defines a direction in stimulus space. Decision-images thus enable the development of predictive models, as well as the generation of optimized stimuli for subsequent psychophysical investigations. Here we describe our method and apply it to data from a human face discrimination experiment. We show that decision-images are able to predict human responses not only in terms of overall percent correct but are able to predict, for individual observers, the probabilities with which individual faces are (mis-) classified. We then test the predictions of the models using optimized stimuli. Finally, we discuss possible generalizations of the approach and its relationships with other models.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Semi-supervised Analysis of Human fMRI Data

Shelton, JA., Blaschko, MB., Lampert, CH., Bartels, A.

Berlin Brain Computer Interface Workshop on Advances in Neurotechnology, 2009, pages: 1, July 2009 (poster)

Abstract
Kernel Canonical Correlation Analysis (KCCA) is a general technique for subspace learning that incorporates principal components analysis (PCA) and Fisher linear discriminant analysis (LDA) as special cases. By finding directions that maximize correlation, CCA learns representations tied more closely to underlying process generating the the data and can ignore high-variance noise directions. However, for data where acquisition in a given modality is expensive or otherwise limited, CCA may suffer from small sample effects. We propose to use semisupervised Laplacian regularization to utilize data that are present in only one modality. This approach is able to find highly correlated directions that also lie along the data manifold, resulting in a more robust estimate of correlated subspaces. Functional magnetic resonance imaging (fMRI) acquired data are naturally amenable to subspace techniques as data are well aligned. fMRI data of the human brain are a particularly interesting candidate. In this study we implemented various supervised and semi-supervised versions of CCA on human fMRI data, with regression to single and multivariate labels (corresponding to video content subjects viewed during the image acquisition). In each variate condition, the semi-supervised variants of CCA performed better than the supervised variants, including a supervised variant with Laplacian regularization. We additionally analyze the weights learned by the regression in order to infer brain regions that are important to different types of visual processing.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Text Clustering with Mixture of von Mises-Fisher Distributions

Sra, S., Banerjee, A., Ghosh, J., Dhillon, I.

In Text mining: classification, clustering, and applications, pages: 121-161, Chapman & Hall/CRC data mining and knowledge discovery series, (Editors: Srivastava, A. N. and Sahami, M.), CRC Press, Boca Raton, FL, USA, June 2009 (inbook)

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Data Mining for Biologists

Tsuda, K.

In Biological Data Mining in Protein Interaction Networks, pages: 14-27, (Editors: Li, X. and Ng, S.-K.), Medical Information Science Reference, Hershey, PA, USA, May 2009 (inbook)

Abstract
In this tutorial chapter, we review basics about frequent pattern mining algorithms, including itemset mining, association rule mining and graph mining. These algorithms can find frequently appearing substructures in discrete data. They can discover structural motifs, for example, from mutation data, protein structures and chemical compounds. As they have been primarily used for business data, biological applications are not so common yet, but their potential impact would be large. Recent advances in computers including multicore machines and ever increasing memory capacity support the application of such methods to larger datasets. We explain technical aspects of the algorithms, but do not go into details. Current biological applications are summarized and possible future directions are given.

ei

Web [BibTex]

Web [BibTex]


no image
Optimization of k-Space Trajectories by Bayesian Experimental Design

Seeger, M., Nickisch, H., Pohmann, R., Schölkopf, B.

17(2627), 17th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2009 (poster)

Abstract
MR image reconstruction from undersampled k-space can be improved by nonlinear denoising estimators since they incorporate statistical prior knowledge about image sparsity. Reconstruction quality depends crucially on the undersampling design (k-space trajectory), in a manner complicated by the nonlinear and signal-dependent characteristics of these methods. We propose an algorithm to assess and optimize k-space trajectories for sparse MRI reconstruction, based on Bayesian experimental design, which is scaled up to full MR images by a novel variational relaxation to iteratively reweighted FFT or gridding computations. Designs are built sequentially by adding phase encodes predicted to be most informative, given the combination of previous measurements with image prior information.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
MR-Based Attenuation Correction for PET/MR

Hofmann, M., Steinke, F., Bezrukov, I., Kolb, A., Aschoff, P., Lichy, M., Erb, M., Nägele, T., Brady, M., Schölkopf, B., Pichler, B.

17(260), 17th Annual Meeting of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2009 (poster)

Abstract
There has recently been a growing interest in combining PET and MR. Attenuation correction (AC), which accounts for radiation attenuation properties of the tissue, is mandatory for quantitative PET. In the case of PET/MR the attenuation map needs to be determined from the MR image. This is intrinsically difficult as MR intensities are not related to the electron density information of the attenuation map. Using ultra-short echo (UTE) acquisition, atlas registration and machine learning, we present methods that allow prediction of the attenuation map based on the MR image both for brain and whole body imaging.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Large Margin Methods for Part of Speech Tagging

Altun, Y.

In Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods, pages: 141-160, (Editors: Keshet, J. and Bengio, S.), Wiley, Hoboken, NJ, USA, January 2009 (inbook)

ei

Web [BibTex]

Web [BibTex]


no image
Covariate shift and local learning by distribution matching

Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.

In Dataset Shift in Machine Learning, pages: 131-160, (Editors: Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D.), MIT Press, Cambridge, MA, USA, 2009 (inbook)

Abstract
Given sets of observations of training and test data, we consider the problem of re-weighting the training data such that its distribution more closely matches that of the test data. We achieve this goal by matching covariate distributions between training and test sets in a high dimensional feature space (specifically, a reproducing kernel Hilbert space). This approach does not require distribution estimation. Instead, the sample weights are obtained by a simple quadratic programming procedure. We provide a uniform convergence bound on the distance between the reweighted training feature mean and the test feature mean, a transductive bound on the expected loss of an algorithm trained on the reweighted data, and a connection to single class SVMs. While our method is designed to deal with the case of simple covariate shift (in the sense of Chapter ??), we have also found benefits for sample selection bias on the labels. Our correction procedure yields its greatest and most consistent advantages when the learning algorithm returns a classifier/regressor that is simpler" than the data might suggest.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Metal-Organic Frameworks

Panella, B., Hirscher, M.

In Encyclopedia of Electrochemical Power Sources, pages: 493-496, Elsevier, Amsterdam [et al.], 2009 (incollection)

mms

[BibTex]

[BibTex]


no image
Carbon Materials

Hirscher, M.

In Encyclopedia of Electrochemical Power Sources, pages: 484-487, Elsevier, Amsterdam [et al.], 2009 (incollection)

mms

[BibTex]

[BibTex]