Header logo is


2019


no image
Semi-supervised learning, causality, and the conditional cluster assumption

von Kügelgen, J., Mey, A., Loog, M., Schölkopf, B.

NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster) Accepted

ei

link (url) [BibTex]

2019


link (url) [BibTex]


no image
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks

von Kügelgen, J., Rubenstein, P., Schölkopf, B., Weller, A.

NeurIPS 2019 Workshop “Do the right thing”: machine learning and causal inference for improved decision making, December 2019 (poster) Accepted

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Actively Learning Gaussian Process Dynamics

Buisson-Fenet, M., Solowjow, F., Trimpe, S.

2019 (techreport) Submitted

Abstract
Despite the availability of ever more data enabled through modern sensor and computer technology, it still remains an open problem to learn dynamical systems in a sample-efficient way. We propose active learning strategies that leverage information-theoretical properties arising naturally during Gaussian process regression, while respecting constraints on the sampling process imposed by the system dynamics. Sample points are selected in regions with high uncertainty, leading to exploratory behavior and data-efficient training of the model. All results are verified in an extensive numerical benchmark.

ics

ArXiv [BibTex]


no image
Demo Abstract: Fast Feedback Control and Coordination with Mode Changes for Wireless Cyber-Physical Systems

(Best Demo Award)

Mager, F., Baumann, D., Jacob, R., Thiele, L., Trimpe, S., Zimmerling, M.

Proceedings of the 18th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), pages: 340-341, 18th ACM/IEEE Conference on Information Processing in Sensor Networks (IPSN), April 2019 (poster)

ics

arXiv PDF DOI [BibTex]

arXiv PDF DOI [BibTex]


Thumb xl lic overview
Fast and Resource-Efficient Control of Wireless Cyber-Physical Systems

Baumann, D.

KTH Royal Institute of Technology, Stockholm, Febuary 2019 (phdthesis)

ics

PDF [BibTex]

PDF [BibTex]


no image
Learning Transferable Representations

Rojas-Carulla, M.

University of Cambridge, UK, 2019 (phdthesis)

ei

[BibTex]

[BibTex]


no image
Sample-efficient deep reinforcement learning for continuous control

Gu, S.

University of Cambridge, UK, 2019 (phdthesis)

ei

[BibTex]


no image
Spatial Filtering based on Riemannian Manifold for Brain-Computer Interfacing

Xu, J.

Technical University of Munich, Germany, 2019 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Perception of temporal dependencies in autoregressive motion

Meding, K., Schölkopf, B., Wichmann, F. A.

European Conference on Visual Perception (ECVP), 2019 (poster)

ei

[BibTex]

[BibTex]


no image
Novel X-ray lenses for direct and coherent imaging

Sanli, U. T.

Universität Stuttgart, Stuttgart, 2019 (phdthesis)

mms

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Quantification of tumor heterogeneity using PET/MRI and machine learning

Katiyar, P.

Eberhard Karls Universität Tübingen, Germany, 2019 (phdthesis)

ei

[BibTex]

[BibTex]


Thumb xl blockdiag
Event-triggered Learning

Solowjow, F., Trimpe, S.

2019 (techreport) Submitted

ics

arXiv PDF [BibTex]


no image
Phenomenal Causality and Sensory Realism

Bruijns, S. A., Meding, K., Schölkopf, B., Wichmann, F. A.

European Conference on Visual Perception (ECVP), 2019 (poster)

ei

[BibTex]

[BibTex]


no image
Actively Learning Dynamical Systems with Gaussian Processes

Buisson-Fenet, M.

Mines ParisTech, PSL Research University, 2019 (mastersthesis)

Abstract
Predicting the behavior of complex systems is of great importance in many fields such as engineering, economics or meteorology. The evolution of such systems often follows a certain structure, which can be induced, for example from the laws of physics or of market forces. Mathematically, this structure is often captured by differential equations. The internal functional dependencies, however, are usually unknown. Hence, using machine learning approaches that recreate this structure directly from data is a promising alternative to designing physics-based models. In particular, for high dimensional systems with nonlinear effects, this can be a challenging task. Learning dynamical systems is different from the classical machine learning tasks, such as image processing, and necessitates different tools. Indeed, dynamical systems can be actuated, often by applying torques or voltages. Hence, the user has a power of decision over the system, and can drive it to certain states by going through the dynamics. Actuating this system generates data, from which a machine learning model of the dynamics can be trained. However, gathering informative data that is representative of the whole state space remains a challenging task. The question of active learning then becomes important: which control inputs should be chosen by the user so that the data generated during an experiment is informative, and enables efficient training of the dynamics model? In this context, Gaussian processes can be a useful framework for approximating system dynamics. Indeed, they perform well on small and medium sized data sets, as opposed to most other machine learning frameworks. This is particularly important considering data is often costly to generate and process, most of all when producing it involves actuating a complex physical system. Gaussian processes also yield a notion of uncertainty, which indicates how sure the model is about its predictions. In this work, we investigate in a principled way how to actively learn dynamical systems, by selecting control inputs that generate informative data. We model the system dynamics by a Gaussian process, and use information-theoretic criteria to identify control trajectories that maximize the information gain. Thus, the input space can be explored efficiently, leading to a data-efficient training of the model. We propose several methods, investigate their theoretical properties and compare them extensively in a numerical benchmark. The final method proves to be efficient at generating informative data. Thus, it yields the lowest prediction error with the same amount of samples on most benchmark systems. We propose several variants of this method, allowing the user to trade off computations with prediction accuracy, and show it is versatile enough to take additional objectives into account.

ics

[BibTex]

[BibTex]

2017


no image
Improving performance of linear field generation with multi-coil setup by optimizing coils position

Aghaeifar, A., Loktyushin, A., Eschelbach, M., Scheffler, K.

Magnetic Resonance Materials in Physics, Biology and Medicine, 30(Supplement 1):S259, 34th Annual Scientific Meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB), October 2017 (poster)

ei

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]


Thumb xl image  1
Human Shape Estimation using Statistical Body Models

Loper, M. M.

University of Tübingen, May 2017 (thesis)

Abstract
Human body estimation methods transform real-world observations into predictions about human body state. These estimation methods benefit a variety of health, entertainment, clothing, and ergonomics applications. State may include pose, overall body shape, and appearance. Body state estimation is underconstrained by observations; ambiguity presents itself both in the form of missing data within observations, and also in the form of unknown correspondences between observations. We address this challenge with the use of a statistical body model: a data-driven virtual human. This helps resolve ambiguity in two ways. First, it fills in missing data, meaning that incomplete observations still result in complete shape estimates. Second, the model provides a statistically-motivated penalty for unlikely states, which enables more plausible body shape estimates. Body state inference requires more than a body model; we therefore build obser- vation models whose output is compared with real observations. In this thesis, body state is estimated from three types of observations: 3D motion capture markers, depth and color images, and high-resolution 3D scans. In each case, a forward process is proposed which simulates observations. By comparing observations to the results of the forward process, state can be adjusted to minimize the difference between simulated and observed data. We use gradient-based methods because they are critical to the precise estimation of state with a large number of parameters. The contributions of this work include three parts. First, we propose a method for the estimation of body shape, nonrigid deformation, and pose from 3D markers. Second, we present a concise approach to differentiating through the rendering process, with application to body shape estimation. And finally, we present a statistical body model trained from human body scans, with state-of-the-art fidelity, good runtime performance, and compatibility with existing animation packages.

ps

Official Version [BibTex]


no image
Estimating B0 inhomogeneities with projection FID navigator readouts

Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Image Quality Improvement by Applying Retrospective Motion Correction on Quantitative Susceptibility Mapping and R2*

Feng, X., Loktyushin, A., Deistung, A., Reichenbach, J.

25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), April 2017 (poster)

ei

link (url) [BibTex]

link (url) [BibTex]


Thumb xl phd thesis teaser
Learning Inference Models for Computer Vision

Jampani, V.

MPI for Intelligent Systems and University of Tübingen, 2017 (phdthesis)

Abstract
Computer vision can be understood as the ability to perform 'inference' on image data. Breakthroughs in computer vision technology are often marked by advances in inference techniques, as even the model design is often dictated by the complexity of inference in them. This thesis proposes learning based inference schemes and demonstrates applications in computer vision. We propose techniques for inference in both generative and discriminative computer vision models. Despite their intuitive appeal, the use of generative models in vision is hampered by the difficulty of posterior inference, which is often too complex or too slow to be practical. We propose techniques for improving inference in two widely used techniques: Markov Chain Monte Carlo (MCMC) sampling and message-passing inference. Our inference strategy is to learn separate discriminative models that assist Bayesian inference in a generative model. Experiments on a range of generative vision models show that the proposed techniques accelerate the inference process and/or converge to better solutions. A main complication in the design of discriminative models is the inclusion of prior knowledge in a principled way. For better inference in discriminative models, we propose techniques that modify the original model itself, as inference is simple evaluation of the model. We concentrate on convolutional neural network (CNN) models and propose a generalization of standard spatial convolutions, which are the basic building blocks of CNN architectures, to bilateral convolutions. First, we generalize the existing use of bilateral filters and then propose new neural network architectures with learnable bilateral filters, which we call `Bilateral Neural Networks'. We show how the bilateral filtering modules can be used for modifying existing CNN architectures for better image segmentation and propose a neural network approach for temporal information propagation in videos. Experiments demonstrate the potential of the proposed bilateral networks on a wide range of vision tasks and datasets. In summary, we propose learning based techniques for better inference in several computer vision models ranging from inverse graphics to freely parameterized neural networks. In generative vision models, our inference techniques alleviate some of the crucial hurdles in Bayesian posterior inference, paving new ways for the use of model based machine learning in vision. In discriminative CNN models, the proposed filter generalizations aid in the design of new neural network architectures that can handle sparse high-dimensional data as well as provide a way for incorporating prior knowledge into CNNs.

ps

pdf [BibTex]

pdf [BibTex]


no image
Development and Evaluation of a Portable BCI System for Remote Data Acquisition

Emde, T.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Brain-Computer Interfaces for patients with Amyotrophic Lateral Sclerosis

Fomina, T.

Eberhard Karls Universität Tübingen, Germany, 2017 (phdthesis)

ei

[BibTex]

[BibTex]


Thumb xl paraview preview
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]


no image
Generalized phase locking analysis of electrophysiology data

Safavi, S., Panagiotaropoulos, T., Kapoor, V., Logothetis, N. K., Besserve, M.

ESI Systems Neuroscience Conference (ESI-SyNC 2017): Principles of Structural and Functional Connectivity, 2017 (poster)

ei

[BibTex]

[BibTex]


no image
Causal models for decision making via integrative inference

Geiger, P.

University of Stuttgart, Germany, 2017 (phdthesis)

ei

[BibTex]

[BibTex]


Thumb xl coverhand wilson
Capturing Hand-Object Interaction and Reconstruction of Manipulated Objects

Tzionas, D.

University of Bonn, 2017 (phdthesis)

Abstract
Hand motion capture with an RGB-D sensor gained recently a lot of research attention, however, even most recent approaches focus on the case of a single isolated hand. We focus instead on hands that interact with other hands or with a rigid or articulated object. Our framework successfully captures motion in such scenarios by combining a generative model with discriminatively trained salient points, collision detection and physics simulation to achieve a low tracking error with physically plausible poses. All components are unified in a single objective function that can be optimized with standard optimization techniques. We initially assume a-priori knowledge of the object's shape and skeleton. In case of unknown object shape there are existing 3d reconstruction methods that capitalize on distinctive geometric or texture features. These methods though fail for textureless and highly symmetric objects like household articles, mechanical parts or toys. We show that extracting 3d hand motion for in-hand scanning effectively facilitates the reconstruction of such objects and we fuse the rich additional information of hands into a 3d reconstruction pipeline. Finally, although shape reconstruction is enough for rigid objects, there is a lack of tools that build rigged models of articulated objects that deform realistically using RGB-D data. We propose a method that creates a fully rigged model consisting of a watertight mesh, embedded skeleton and skinning weights by employing a combination of deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow.

ps

Thesis link (url) Project Page [BibTex]


Thumb xl screen shot 2018 02 08 at 1.12.35 pm
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

dlg

[BibTex]

[BibTex]


no image
Learning Optimal Configurations for Modeling Frowning by Transcranial Electrical Stimulation

Sücker, K.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Understanding FORC using synthetic micro-structured systems with variable coupling- and coercivefield distributions

Groß, Felix

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]


no image
Adsorption von Wasserstoffmolekülen in nanoporösen Gerüststrukturen

Kotzur, Nadine

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]

[BibTex]

2011


no image
Spatiotemporal mapping of rhythmic activity in the inferior convexity of the macaque prefrontal cortex

Panagiotaropoulos, T., Besserve, M., Crocker, B., Kapoor, V., Tolias, A., Panzeri, S., Logothetis, N.

41(239.15), 41st Annual Meeting of the Society for Neuroscience (Neuroscience), November 2011 (poster)

Abstract
The inferior convexity of the macaque prefrontal cortex (icPFC) is known to be involved in higher order processing of sensory information mediating stimulus selection, attention and working memory. Until now, the vast majority of electrophysiological investigations of the icPFC employed single electrode recordings. As a result, relatively little is known about the spatiotemporal structure of neuronal activity in this cortical area. Here we study in detail the spatiotemporal properties of local field potentials (LFP's) in the icPFC using multi electrode recordings during anesthesia. We computed the LFP-LFP coherence as a function of frequency for thousands of pairs of simultaneously recorded sites anterior to the arcuate and inferior to the principal sulcus. We observed two distinct peaks of coherent oscillatory activity between approximately 4-10 and 15-25 Hz. We then quantified the instantaneous phase of these frequency bands using the Hilbert transform and found robust phase gradients across recording sites. The dependency of the phase on the spatial location reflects the existence of traveling waves of electrical activity in the icPFC. The dominant axis of these traveling waves roughly followed the ventral-dorsal plane. Preliminary results show that repeated visual stimulation with a 10s movie had no dramatic effect on the spatial structure of the traveling waves. Traveling waves of electrical activity in the icPFC could reflect highly organized cortical processing in this area of prefrontal cortex.

ei

Web [BibTex]

2011


Web [BibTex]


no image
Evaluation and Optimization of MR-Based Attenuation Correction Methods in Combined Brain PET/MR

Mantlik, F., Hofmann, M., Bezrukov, I., Schmidt, H., Kolb, A., Beyer, T., Reimold, M., Schölkopf, B., Pichler, B.

2011(MIC18.M-96), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (poster)

Abstract
Combined PET/MR provides simultaneous molecular and functional information in an anatomical context with unique soft tissue contrast. However, PET/MR does not support direct derivation of attenuation maps of objects and tissues within the measured PET field-of-view. Valid attenuation maps are required for quantitative PET imaging, specifically for scientific brain studies. Therefore, several methods have been proposed for MR-based attenuation correction (MR-AC). Last year, we performed an evaluation of different MR-AC methods, including simple MR thresholding, atlas- and machine learning-based MR-AC. CT-based AC served as gold standard reference. RoIs from 2 anatomic brain atlases with different levels of detail were used for evaluation of correction accuracy. We now extend our evaluation of different MR-AC methods by using an enlarged dataset of 23 patients from the integrated BrainPET/MR (Siemens Healthcare). Further, we analyze options for improving the MR-AC performance in terms of speed and accuracy. Finally, we assess the impact of ignoring BrainPET positioning aids during the course of MR-AC. This extended study confirms the overall prediction accuracy evaluation results of the first evaluation in a larger patient population. Removing datasets affected by metal artifacts from the Atlas-Patch database helped to improve prediction accuracy, although the size of the database was reduced by one half. Significant improvement in prediction speed can be gained at a cost of only slightly reduced accuracy, while further optimizations are still possible.

ei

Web [BibTex]

Web [BibTex]


no image
Atlas- and Pattern Recognition Based Attenuation Correction on Simultaneous Whole-Body PET/MR

Bezrukov, I., Schmidt, H., Mantlik, F., Schwenzer, N., Hofmann, M., Schölkopf, B., Pichler, B.

2011(MIC18.M-116), 2011 IEEE Nuclear Science Symposium, Medical Imaging Conference (NSS-MIC), October 2011 (poster)

Abstract
With the recent availability of clinical whole-body PET/MRI it is possible to evaluate and further develop MR-based attenuation correction methods using simultaneously acquired PET/MR data. We present first results for MRAC on patient data acquired on a fully integrated whole-body PET/MRI (Biograph mMR, Siemens) using our method that applies atlas registration and pattern recognition (ATPR) and compare them to the segmentation-based (SEG) method provided by the manufacturer. The ATPR method makes use of a database of previously aligned pairs of MR-CT volumes to predict attenuation values on a continuous scale. The robustness of the method in presence of MR artifacts was improved by location and size based detection. Lesion to liver and lesion to blood ratios (LLR and LBR) were compared for both methods on 29 iso-contour ROIs in 4 patients. ATPR showed >20% higher LBR and LLR for ROIs in and >7% near osseous tissue. For ROIs in soft tissue, both methods yielded similar ratios with max. differences <6% . For ROIs located within metal artifacts in the MR image, ATPR showed >190% higher LLR and LBR than SEG, where ratios <0.1 occured. For lesions in the neighborhood of artifacts, both ratios were >15% higher for ATPR. If artifacts in MR volumes caused by metal implants are not accounted for in the computation of attenuation maps, they can lead to a strong decrease of lesion to background ratios, even to disappearance of hot spots. Metal implants are likely to occur in the patient collective receiving combined PET/MR scans, of our first 10 patients, 3 had metal implants. Our method is currently able to account for artifacts in the pelvis caused by prostheses. The ability of the ATPR method to account for bone leads to a significant increase of LLR and LBR in osseous tissue, which supports our previous evaluations with combined PET/CT and PET/MR data. For lesions within soft tissue, lesion to background ratios of ATPR and SEG were comparable.

ei

Web [BibTex]

Web [BibTex]


no image
Retrospective blind motion correction of MR images

Loktyushin, A., Nickisch, H., Pohmann, R.

Magnetic Resonance Materials in Physics, Biology and Medicine, 24(Supplement 1):498, 28th Annual Scientific Meeting ESMRMB, October 2011 (poster)

Abstract
We present a retrospective method, which significantly reduces ghosting and blurring artifacts due to subject motion. No modifications to the sequence (as in [2, 3]), or the use of additional equipment (as in [1]) are required. Our method iteratively searches for the transformation, that applied to the lines in k-space -- yields the sparsest Laplacian filter output in the spatial domain.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Model based reconstruction for GRE EPI

Blecher, W., Pohmann, R., Schölkopf, B., Seeger, M.

Magnetic Resonance Materials in Physics, Biology and Medicine, 24(Supplement 1):493-494, 28th Annual Scientific Meeting ESMRMB, October 2011 (poster)

Abstract
Model based nonlinear image reconstruction methods for MRI [3] are at the heart of modern reconstruction techniques (e.g.compressed sensing [6]). In general, models are expressed as a matrix equation where y and u are column vectors of k-space and image data, X model matrix and e independent noise. However, solving the corresponding linear system is not tractable. Therefore fast nonlinear algorithms that minimize a function wrt.the unknown image are the method of choice: In this work a model for gradient echo EPI, is proposed that incorporates N/2 Ghost correction and correction for field inhomogeneities. In addition to reconstruction from full data, the model allows for sparse reconstruction, joint estimation of image, field-, and relaxation-map (like [5,8] for spiral imaging), and improved N/2 ghost correction.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Simultaneous multimodal imaging of patients with bronchial carcinoma in a whole body MR/PET system

Brendle, C., Sauter, A., Schmidt, H., Schraml, C., Bezrukov, I., Martirosian, P., Hetzel, J., Müller, M., Claussen, C., Schwenzer, N., Pfannenberg, C.

Magnetic Resonance Materials in Physics, Biology and Medicine, 24(Supplement 1):141, 28th annual scientific meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRB), October 2011 (poster)

Abstract
Purpose/Introduction: Lung cancer is among the most frequent cancers (1). Exact determination of tumour extent and viability is crucial for adequate therapy guidance. [18F]-FDG-PET allows accurate staging and the evaluation of therapy response based on glucose metabolism. Diffusion weighted MRI (DWI) is another promising tool for the evaluation of tumour viability (2,3). The aim of the study was the simultaneous PET-MR acquisition in lung cancer patients and correlation of PET and MR data. Subjects and Methods: Seven patients (age 38-73 years, mean 61 years) with highly suspected or known bronchial carcinoma were examined. First, a [18F]-FDG-PET/CT was performed (injected dose: 332-380 MBq). Subsequently, patients were examined at the whole-body MR/PET (Siemens Biograph mMR). The MRI is a modified 3T Verio whole body system with a magnet bore of 60 cm (max. amplitude gradients 45 mT/m, max. slew rate 200 T/m/s). Concerning the PET, the whole-body MR/PET system comprises 56 detector cassettes with a 59.4 cm transaxial and 25.8 cm axial FoV. The following parameters for PET acquisition were applied: 2 bed positions, 6 min/bed with an average uptake time of 124 min after injection (range: 110-143 min). The attenuation correction of PET data was conducted with a segmentation-based method provided by the manufacturer. Acquired PET data were reconstructed with an iterative 3D OSEM algorithm using 3 iterations and 21 subsets, Gaussian filter of 3 mm. DWI MR images were recorded simultaneously for each bed using two b-values (0/800 s/mm2). SUVmax and ADCmin were assessed in a ROI analysis. The following ratios were calculated: SUVmax(tumor)/SUVmean(liver) and ADCmin(tumor)/ADCmean(muscle). Correlation between SUV and ADC was analyzed (Pearson’s correlation). Results: Diagnostic scans could be obtained in all patients with good tumour delineation. The spatial matching of PET and DWI data was very exact. Most tumours showed a pronounced FDG-uptake in combination with decreased ADC values. Significant correlation was found between SUV and ADC ratios (r = -0.87, p = 0.0118). Discussion/Conclusion: Simultaneous MR/PET imaging of lung cancer is feasible. The whole-body MR/PET system can provide complementary information regarding tumour viability and cellularity which could facilitate a more profound tumour characterization. Further studies have to be done to evaluate the importance of these parameters for therapy decisions and monitoring

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
PAC-Bayesian Analysis of Martingales and Multiarmed Bandits

Seldin, Y., Laviolette, F., Shawe-Taylor, J., Peters, J., Auer, P.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, May 2011 (techreport)

Abstract
We present two alternative ways to apply PAC-Bayesian analysis to sequences of dependent random variables. The first is based on a new lemma that enables to bound expectations of convex functions of certain dependent random variables by expectations of the same functions of independent Bernoulli random variables. This lemma provides an alternative tool to Hoeffding-Azuma inequality to bound concentration of martingale values. Our second approach is based on integration of Hoeffding-Azuma inequality with PAC-Bayesian analysis. We also introduce a way to apply PAC-Bayesian analysis in situation of limited feedback. We combine the new tools to derive PAC-Bayesian generalization and regret bounds for the multiarmed bandit problem. Although our regret bound is not yet as tight as state-of-the-art regret bounds based on other well-established techniques, our results significantly expand the range of potential applications of PAC-Bayesian analysis and introduce a new analysis tool to reinforcement learning and many other fields, where martingales and limited feedback are encountered.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Non-stationary Correction of Optical Aberrations

Schuler, C., Hirsch, M., Harmeling, S., Schölkopf, B.

(1), Max Planck Institute for Intelligent Systems, Tübingen, Germany, May 2011 (techreport)

Abstract
Taking a sharp photo at several megapixel resolution traditionally relies on high grade lenses. In this paper, we present an approach to alleviate image degradations caused by imperfect optics. We rely on a calibration step to encode the optical aberrations in a space-variant point spread function and obtain a corrected image by non-stationary deconvolution. By including the Bayer array in our image formation model, we can perform demosaicing as part of the deconvolution.

ei

PDF [BibTex]

PDF [BibTex]


no image
Crowdsourcing for optimisation of deconvolution methods via an iPhone application

Lang, A.

Hochschule Reutlingen, Germany, April 2011 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Multiple Kernel Learning: A Unifying Probabilistic Viewpoint

Nickisch, H., Seeger, M.

Max Planck Institute for Biological Cybernetics, March 2011 (techreport)

Abstract
We present a probabilistic viewpoint to multiple kernel learning unifying well-known regularised risk approaches and recent advances in approximate Bayesian inference relaxations. The framework proposes a general objective function suitable for regression, robust regression and classification that is lower bound of the marginal likelihood and contains many regularised risk approaches as special cases. Furthermore, we derive an efficient and provably convergent optimisation algorithm.

ei

Web [BibTex]

Web [BibTex]


no image
Multiple testing, uncertainty and realistic pictures

Langovoy, M., Wittich, O.

(2011-004), EURANDOM, Technische Universiteit Eindhoven, January 2011 (techreport)

Abstract
We study statistical detection of grayscale objects in noisy images. The object of interest is of unknown shape and has an unknown intensity, that can be varying over the object and can be negative. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. We propose an algorithm that can be used to detect grayscale objects of unknown shapes in the presence of nonparametric noise of unknown level. Our algorithm is based on a nonparametric multiple testing procedure. We establish the limit of applicability of our method via an explicit, closed-form, non-asymptotic and nonparametric consistency bound. This bound is valid for a wide class of nonparametric noise distributions. We achieve this by proving an uncertainty principle for percolation on nite lattices.

ei

PDF [BibTex]

PDF [BibTex]


no image
Support Vector Machines for finding deletions and short insertions using paired-end short reads

Grimm, D., Hagmann, J., König, D., Weigel, D., Borgwardt, KM.

International Conference on Intelligent Systems for Molecular Biology (ISMB), 2011 (poster)

ei

Web [BibTex]

Web [BibTex]