Header logo is


2017


no image
Computing with Uncertainty

Hennig, P.

2017 (mpi_year_book)

Abstract
Machine learning requires computer hardware to reliable and efficiently compute estimations for ever more complex and fundamentally incomputable quantities. A research team at MPI for Intelligent Systems in Tübingen develops new algorithms which purposely lower the precision of computations and return an explicit measure of uncertainty over the correct result alongside the estimate. Doing so allows for more flexible management of resources, and increases the reliability of intelligent systems.

link (url) DOI [BibTex]


no image
Biomechanics and Locomotion Control in Legged Animals and Legged Robots

Sproewitz, A., Heim, S.

2017 (mpi_year_book)

Abstract
An animal's running gait is dynamic, efficient, elegant, and adaptive. We see locomotion in animals as an orchestrated interplay of the locomotion apparatus, interacting with its environment. The Dynamic Locomotion Group at the Max Planck Institute for Intelligent Systems in Stuttgart develops novel legged robots to decipher aspects of biomechanics and neuromuscular control of legged locomotion in animals, and to understand general principles of locomotion.

link (url) DOI [BibTex]


Thumb xl paraview preview
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]


no image
Unsupervised identification of neural events in local field potentials

Besserve, M., Schölkopf, B., Logothetis, N. K.

44th Annual Meeting of the Society for Neuroscience (Neuroscience), 2014 (talk)

ei

[BibTex]

[BibTex]


no image
Quantifying statistical dependency

Besserve, M.

Research Network on Learning Systems Summer School, 2014 (talk)

ei

[BibTex]

[BibTex]


no image
Exploring complex diseases with intelligent systems

Borgwardt, K.

2014 (mpi_year_book)

Abstract
Physicians are collecting an ever increasing amount of data describing the health state of their patients. Is new knowledge about diseases hidden in this data, which could lead to better therapies? The field of Machine Learning in Biomedicine is concerned with the development of approaches which help to gain such insights from massive biomedical data.

link (url) [BibTex]


no image
The cellular life-death decision – how mitochondrial membrane proteins can determine cell fate

García-Sáez, Ana J.

2014 (mpi_year_book)

Abstract
Living organisms have a very effective method for eliminating cells that are no longer needed: programmed death. Researchers in the group of Ana García Sáez work with a protein called Bax, a key regulator of apoptosis that creates pores with a flexible diameter inside the outer mitochondrial membrane. This step inevitably triggers the final death of the cell. These insights into the role of important key enzymes in setting off apoptosis could provide useful for developing drugs that can directly influence apoptosis.

link (url) [BibTex]