Header logo is


2017


no image
Asymptotic Normality of the Median Heuristic

Garreau, Damien

July 2017, preprint (unpublished)

link (url) [BibTex]

2017


link (url) [BibTex]


Thumb xl image  1
Human Shape Estimation using Statistical Body Models

Loper, M. M.

University of Tübingen, May 2017 (thesis)

Abstract
Human body estimation methods transform real-world observations into predictions about human body state. These estimation methods benefit a variety of health, entertainment, clothing, and ergonomics applications. State may include pose, overall body shape, and appearance. Body state estimation is underconstrained by observations; ambiguity presents itself both in the form of missing data within observations, and also in the form of unknown correspondences between observations. We address this challenge with the use of a statistical body model: a data-driven virtual human. This helps resolve ambiguity in two ways. First, it fills in missing data, meaning that incomplete observations still result in complete shape estimates. Second, the model provides a statistically-motivated penalty for unlikely states, which enables more plausible body shape estimates. Body state inference requires more than a body model; we therefore build obser- vation models whose output is compared with real observations. In this thesis, body state is estimated from three types of observations: 3D motion capture markers, depth and color images, and high-resolution 3D scans. In each case, a forward process is proposed which simulates observations. By comparing observations to the results of the forward process, state can be adjusted to minimize the difference between simulated and observed data. We use gradient-based methods because they are critical to the precise estimation of state with a large number of parameters. The contributions of this work include three parts. First, we propose a method for the estimation of body shape, nonrigid deformation, and pose from 3D markers. Second, we present a concise approach to differentiating through the rendering process, with application to body shape estimation. And finally, we present a statistical body model trained from human body scans, with state-of-the-art fidelity, good runtime performance, and compatibility with existing animation packages.

ps

Official Version [BibTex]


Thumb xl phd thesis teaser
Learning Inference Models for Computer Vision

Jampani, V.

MPI for Intelligent Systems and University of Tübingen, 2017 (phdthesis)

Abstract
Computer vision can be understood as the ability to perform 'inference' on image data. Breakthroughs in computer vision technology are often marked by advances in inference techniques, as even the model design is often dictated by the complexity of inference in them. This thesis proposes learning based inference schemes and demonstrates applications in computer vision. We propose techniques for inference in both generative and discriminative computer vision models. Despite their intuitive appeal, the use of generative models in vision is hampered by the difficulty of posterior inference, which is often too complex or too slow to be practical. We propose techniques for improving inference in two widely used techniques: Markov Chain Monte Carlo (MCMC) sampling and message-passing inference. Our inference strategy is to learn separate discriminative models that assist Bayesian inference in a generative model. Experiments on a range of generative vision models show that the proposed techniques accelerate the inference process and/or converge to better solutions. A main complication in the design of discriminative models is the inclusion of prior knowledge in a principled way. For better inference in discriminative models, we propose techniques that modify the original model itself, as inference is simple evaluation of the model. We concentrate on convolutional neural network (CNN) models and propose a generalization of standard spatial convolutions, which are the basic building blocks of CNN architectures, to bilateral convolutions. First, we generalize the existing use of bilateral filters and then propose new neural network architectures with learnable bilateral filters, which we call `Bilateral Neural Networks'. We show how the bilateral filtering modules can be used for modifying existing CNN architectures for better image segmentation and propose a neural network approach for temporal information propagation in videos. Experiments demonstrate the potential of the proposed bilateral networks on a wide range of vision tasks and datasets. In summary, we propose learning based techniques for better inference in several computer vision models ranging from inverse graphics to freely parameterized neural networks. In generative vision models, our inference techniques alleviate some of the crucial hurdles in Bayesian posterior inference, paving new ways for the use of model based machine learning in vision. In discriminative CNN models, the proposed filter generalizations aid in the design of new neural network architectures that can handle sparse high-dimensional data as well as provide a way for incorporating prior knowledge into CNNs.

ps

pdf [BibTex]

pdf [BibTex]


no image
Development and Evaluation of a Portable BCI System for Remote Data Acquisition

Emde, T.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Brain-Computer Interfaces for patients with Amyotrophic Lateral Sclerosis

Fomina, T.

Eberhard Karls Universität Tübingen, Germany, 2017 (phdthesis)

ei

[BibTex]

[BibTex]


Thumb xl paraview preview
Design of a visualization scheme for functional connectivity data of Human Brain

Bramlage, L.

Hochschule Osnabrück - University of Applied Sciences, 2017 (thesis)

sf

Bramlage_BSc_2017.pdf [BibTex]


no image
Causal models for decision making via integrative inference

Geiger, P.

University of Stuttgart, Germany, 2017 (phdthesis)

ei

[BibTex]

[BibTex]


Thumb xl coverhand wilson
Capturing Hand-Object Interaction and Reconstruction of Manipulated Objects

Tzionas, D.

University of Bonn, 2017 (phdthesis)

Abstract
Hand motion capture with an RGB-D sensor gained recently a lot of research attention, however, even most recent approaches focus on the case of a single isolated hand. We focus instead on hands that interact with other hands or with a rigid or articulated object. Our framework successfully captures motion in such scenarios by combining a generative model with discriminatively trained salient points, collision detection and physics simulation to achieve a low tracking error with physically plausible poses. All components are unified in a single objective function that can be optimized with standard optimization techniques. We initially assume a-priori knowledge of the object's shape and skeleton. In case of unknown object shape there are existing 3d reconstruction methods that capitalize on distinctive geometric or texture features. These methods though fail for textureless and highly symmetric objects like household articles, mechanical parts or toys. We show that extracting 3d hand motion for in-hand scanning effectively facilitates the reconstruction of such objects and we fuse the rich additional information of hands into a 3d reconstruction pipeline. Finally, although shape reconstruction is enough for rigid objects, there is a lack of tools that build rigged models of articulated objects that deform realistically using RGB-D data. We propose a method that creates a fully rigged model consisting of a watertight mesh, embedded skeleton and skinning weights by employing a combination of deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow.

ps

Thesis link (url) Project Page [BibTex]


Thumb xl screen shot 2018 02 08 at 1.12.35 pm
Evaluation of the passive dynamics of compliant legs with inertia

Györfi, B.

University of Applied Science Pforzheim, Germany, 2017 (mastersthesis)

dlg

[BibTex]

[BibTex]


no image
Learning Optimal Configurations for Modeling Frowning by Transcranial Electrical Stimulation

Sücker, K.

Graduate School of Neural Information Processing, Eberhard Karls Universität Tübingen, Germany, 2017 (mastersthesis)

ei

[BibTex]

[BibTex]


no image
Understanding FORC using synthetic micro-structured systems with variable coupling- and coercivefield distributions

Groß, Felix

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]


no image
Adsorption von Wasserstoffmolekülen in nanoporösen Gerüststrukturen

Kotzur, Nadine

Universität Stuttgart, Stuttgart, 2017 (mastersthesis)

mms

[BibTex]

[BibTex]

2016


Thumb xl screen shot 2016 07 25 at 13.52.05
Non-parametric Models for Structured Data and Applications to Human Bodies and Natural Scenes

Lehrmann, A.

ETH Zurich, July 2016 (phdthesis)

Abstract
The purpose of this thesis is the study of non-parametric models for structured data and their fields of application in computer vision. We aim at the development of context-sensitive architectures which are both expressive and efficient. Our focus is on directed graphical models, in particular Bayesian networks, where we combine the flexibility of non-parametric local distributions with the efficiency of a global topology with bounded treewidth. A bound on the treewidth is obtained by either constraining the maximum indegree of the underlying graph structure or by introducing determinism. The non-parametric distributions in the nodes of the graph are given by decision trees or kernel density estimators. The information flow implied by specific network topologies, especially the resultant (conditional) independencies, allows for a natural integration and control of contextual information. We distinguish between three different types of context: static, dynamic, and semantic. In four different approaches we propose models which exhibit varying combinations of these contextual properties and allow modeling of structured data in space, time, and hierarchies derived thereof. The generative character of the presented models enables a direct synthesis of plausible hypotheses. Extensive experiments validate the developed models in two application scenarios which are of particular interest in computer vision: human bodies and natural scenes. In the practical sections of this work we discuss both areas from different angles and show applications of our models to human pose, motion, and segmentation as well as object categorization and localization. Here, we benefit from the availability of modern datasets of unprecedented size and diversity. Comparisons to traditional approaches and state-of-the-art research on the basis of well-established evaluation criteria allows the objective assessment of our contributions.

ps

pdf [BibTex]


no image
Supplemental material for ’Communication Rate Analysis for Event-based State Estimation’

Ebner, S., Trimpe, S.

Max Planck Institute for Intelligent Systems, January 2016 (techreport)

am ics

PDF [BibTex]

PDF [BibTex]


no image
Screening Rules for Convex Problems

Raj, A., Olbrich, J., Gärtner, B., Schölkopf, B., Jaggi, M.

2016 (unpublished) Submitted

ei

[BibTex]

[BibTex]


no image
Statische und dynamische Magnetisierungseigenschaften nanoskaliger Überstrukturen

Gräfe, J.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2016 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Gepinnte Bahnmomente in magnetischen Heterostrukturen

Audehm, P.

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2016 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Austauschgekoppelte Moden in magnetischen Vortexstrukturen

Dieterle, G.

Universität Stuttgart, Stuttgart, 2016 (phdthesis)

mms

[BibTex]

[BibTex]


no image
Density matrix calculations for the ultrafast demagnetization after femtosecond laser pulses

Weng, Weikai

Universität Stuttgart, Stuttgart, 2016 (mastersthesis)

mms

[BibTex]

[BibTex]


no image
Deep Learning for Diabetic Retinopathy Diagnostics

Balles, Lukas

Heidelberg University, 2016 (mastersthesis)

[BibTex]

[BibTex]


no image
Helium und Hydrogen Isotope Adsorption and Separation in Metal-Organic Frameworks

Zaiser, Ingrid

Universität Stuttgart, Stuttgart (und Cuvillier Verlag, Göttingen), 2016 (phdthesis)

mms

[BibTex]

[BibTex]

2010


no image
Computationally efficient algorithms for statistical image processing: Implementation in R

Langovoy, M., Wittich, O.

(2010-053), EURANDOM, Technische Universiteit Eindhoven, December 2010 (techreport)

Abstract
In the series of our earlier papers on the subject, we proposed a novel statistical hy- pothesis testing method for detection of objects in noisy images. The method uses results from percolation theory and random graph theory. We developed algorithms that allowed to detect objects of unknown shapes in the presence of nonparametric noise of unknown level and of un- known distribution. No boundary shape constraints were imposed on the objects, only a weak bulk condition for the object's interior was required. Our algorithms have linear complexity and exponential accuracy. In the present paper, we describe an implementation of our nonparametric hypothesis testing method. We provide a program that can be used for statistical experiments in image processing. This program is written in the statistical programming language R.

ei

PDF [BibTex]

2010


PDF [BibTex]


no image
Fast Convergent Algorithms for Expectation Propagation Approximate Bayesian Inference

Seeger, M., Nickisch, H.

Max Planck Institute for Biological Cybernetics, December 2010 (techreport)

Abstract
We propose a novel algorithm to solve the expectation propagation relaxation of Bayesian inference for continuous-variable graphical models. In contrast to most previous algorithms, our method is provably convergent. By marrying convergent EP ideas from (Opper&Winther 05) with covariance decoupling techniques (Wipf&Nagarajan 08, Nickisch&Seeger 09), it runs at least an order of magnitude faster than the most commonly used EP solver.

ei

Web [BibTex]

Web [BibTex]


no image
Comparative Quantitative Evaluation of MR-Based Attenuation Correction Methods in Combined Brain PET/MR

Mantlik, F., Hofmann, M., Bezrukov, I., Kolb, A., Beyer, T., Reimold, M., Pichler, B., Schölkopf, B.

2010(M08-4), 2010 Nuclear Science Symposium and Medical Imaging Conference (NSS-MIC), November 2010 (talk)

Abstract
Combined PET/MR provides at the same time molecular and functional imaging as well as excellent soft tissue contrast. It does not allow one to directly measure the attenuation properties of scanned tissues, despite the fact that accurate attenuation maps are necessary for quantitative PET imaging. Several methods have therefore been proposed for MR-based attenuation correction (MR-AC). So far, they have only been evaluated on data acquired from separate MR and PET scanners. We evaluated several MR-AC methods on data from 10 patients acquired on a combined BrainPET/MR scanner. This allowed the consideration of specific PET/MR issues, such as the RF coil that attenuates and scatters 511 keV gammas. We evaluated simple MR thresholding methods as well as atlas and machine learning-based MR-AC. CT-based AC served as gold standard reference. To comprehensively evaluate the MR-AC accuracy, we used RoIs from 2 anatomic brain atlases with different levels of detail. Visual inspection of the PET images indicated that even the basic FLASH threshold MR-AC may be sufficient for several applications. Using a UTE sequence for bone prediction in MR-based thresholding occasionally led to false prediction of bone tissue inside the brain, causing a significant overestimation of PET activity. Although it yielded a lower mean underestimation of activity, it exhibited the highest variance of all methods. The atlas averaging approach had a smaller mean error, but showed high maximum overestimation on the RoIs of the more detailed atlas. The Nave Bayes and Atlas-Patch MR-AC yielded the smallest variance, and the Atlas-Patch also showed the smallest mean error. In conclusion, Atlas-based AC using only MR information on the BrainPET/MR yields a high level of accuracy that is sufficient for clinical quantitative imaging requirements. The Atlas-Patch approach was superior to alternative atlas-based methods, yielding a quantification error below 10% for all RoIs except very small ones.

ei

[BibTex]

[BibTex]


no image
Bayesian Inference and Experimental Design for Large Generalised Linear Models

Nickisch, H.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, September 2010 (phdthesis)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
A PAC-Bayesian Analysis of Graph Clustering and Pairwise Clustering

Seldin, Y.

Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2010 (techreport)

Abstract
We formulate weighted graph clustering as a prediction problem: given a subset of edge weights we analyze the ability of graph clustering to predict the remaining edge weights. This formulation enables practical and theoretical comparison of different approaches to graph clustering as well as comparison of graph clustering with other possible ways to model the graph. We adapt the PAC-Bayesian analysis of co-clustering (Seldin and Tishby, 2008; Seldin, 2009) to derive a PAC-Bayesian generalization bound for graph clustering. The bound shows that graph clustering should optimize a trade-off between empirical data fit and the mutual information that clusters preserve on the graph nodes. A similar trade-off derived from information-theoretic considerations was already shown to produce state-of-the-art results in practice (Slonim et al., 2005; Yom-Tov and Slonim, 2009). This paper supports the empirical evidence by providing a better theoretical foundation, suggesting formal generalization guarantees, and offering a more accurate way to deal with finite sample issues. We derive a bound minimization algorithm and show that it provides good results in real-life problems and that the derived PAC-Bayesian bound is reasonably tight.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Sparse nonnegative matrix approximation: new formulations and algorithms

Tandon, R., Sra, S.

(193), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, September 2010 (techreport)

Abstract
We introduce several new formulations for sparse nonnegative matrix approximation. Subsequently, we solve these formulations by developing generic algorithms. Further, to help selecting a particular sparse formulation, we briefly discuss the interpretation of each formulation. Finally, preliminary experiments are presented to illustrate the behavior of our formulations and algorithms.

ei

PDF [BibTex]

PDF [BibTex]


no image
Robust nonparametric detection of objects in noisy images

Langovoy, M., Wittich, O.

(2010-049), EURANDOM, Technische Universiteit Eindhoven, September 2010 (techreport)

Abstract
We propose a novel statistical hypothesis testing method for detection of objects in noisy images. The method uses results from percolation theory and random graph theory. We present an algorithm that allows to detect objects of unknown shapes in the presence of nonparametric noise of unknown level and of unknown distribution. No boundary shape constraints are imposed on the object, only a weak bulk condition for the object's interior is required. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. In this paper, we develop further the mathematical formalism of our method and explore im- portant connections to the mathematical theory of percolation and statistical physics. We prove results on consistency and algorithmic complexity of our testing procedure. In addition, we address not only an asymptotic behavior of the method, but also a nite sample performance of our test.

ei

PDF [BibTex]

PDF [BibTex]


no image
Statistical image analysis and percolation theory

Davies, P., Langovoy, M., Wittich, O.

73rd Annual Meeting of the Institute of Mathematical Statistics (IMS), August 2010 (talk)

Abstract
We develop a novel method for detection of signals and reconstruction of images in the presence of random noise. The method uses results from percolation theory. We specifically address the problem of detection of objects of unknown shapes in the case of nonparametric noise. The noise density is unknown and can be heavy-tailed. We view the object detection problem as hypothesis testing for discrete statistical inverse problems. We present an algorithm that allows to detect objects of various shapes in noisy images. We prove results on consistency and algorithmic complexity of our procedures.

ei

Web [BibTex]

Web [BibTex]


no image
Large Scale Variational Inference and Experimental Design for Sparse Generalized Linear Models

Seeger, M., Nickisch, H.

Max Planck Institute for Biological Cybernetics, August 2010 (techreport)

Abstract
Many problems of low-level computer vision and image processing, such as denoising, deconvolution, tomographic reconstruction or super-resolution, can be addressed by maximizing the posterior distribution of a sparse linear model (SLM). We show how higher-order Bayesian decision-making problems, such as optimizing image acquisition in magnetic resonance scanners, can be addressed by querying the SLM posterior covariance, unrelated to the density's mode. We propose a scalable algorithmic framework, with which SLM posteriors over full, high-resolution images can be approximated for the first time, solving a variational optimization problem which is convex iff posterior mode finding is convex. These methods successfully drive the optimization of sampling trajectories for real-world magnetic resonance imaging through Bayesian experimental design, which has not been attempted before. Our methodology provides new insight into similarities and differences between sparse reconstruction and approximate Bayesian inference, and has important implications for compressive sensing of real-world images.

ei

Web [BibTex]


no image
Cooperative Cuts for Image Segmentation

Jegelka, S., Bilmes, J.

(UWEETR-1020-0003), University of Washington, Washington DC, USA, August 2010 (techreport)

Abstract
We propose a novel framework for graph-based cooperative regularization that uses submodular costs on graph edges. We introduce an efficient iterative algorithm to solve the resulting hard discrete optimization problem, and show that it has a guaranteed approximation factor. The edge-submodular formulation is amenable to the same extensions as standard graph cut approaches, and applicable to a range of problems. We apply this method to the image segmentation problem. Specifically, Here, we apply it to introduce a discount for homogeneous boundaries in binary image segmentation on very difficult images, precisely, long thin objects and color and grayscale images with a shading gradient. The experiments show that significant portions of previously truncated objects are now preserved.

ei

Web [BibTex]

Web [BibTex]


no image
Inferring High-Dimensional Causal Relations using Free Probability Theory

Zscheischler, J.

Humboldt Universität Berlin, Germany, August 2010 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Statistical image analysis and percolation theory

Langovoy, M., Wittich, O.

28th European Meeting of Statisticians (EMS), August 2010 (talk)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Fast algorithms for total-variationbased optimization

Barbero, A., Sra, S.

(194), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, August 2010 (techreport)

Abstract
We derive a number of methods to solve efficiently simple optimization problems subject to a totalvariation (TV) regularization, under different norms of the TV operator and both for the case of 1-dimensional and 2-dimensional data. In spite of the non-smooth, non-separable nature of the TV terms considered, we show that a dual formulation with strong structure can be derived. Taking advantage of this structure we develop adaptions of existing algorithms from the optimization literature, resulting in efficient methods for the problem at hand. Experimental results show that for 1-dimensional data the proposed methods achieve convergence within good accuracy levels in practically linear time, both for L1 and L2 norms. For the more challenging 2-dimensional case a performance of order O(N2 log2 N) for N x N inputs is achieved when using the L2 norm. A final section suggests possible extensions and lines of further work.

ei

PDF [BibTex]

PDF [BibTex]


no image
Cooperative Cuts: Graph Cuts with Submodular Edge Weights

Jegelka, S., Bilmes, J.

24th European Conference on Operational Research (EURO XXIV), July 2010 (talk)

Abstract
We introduce cooperative cut, a minimum cut problem whose cost is a submodular function on sets of edges: the cost of an edge that is added to a cut set depends on the edges in the set. Applications are e.g. in probabilistic graphical models and image processing. We prove NP hardness and a polynomial lower bound on the approximation factor, and upper bounds via four approximation algorithms based on different techniques. Our additional heuristics have attractive practical properties, e.g., to rely only on standard min-cut. Both our algorithms and heuristics appear to do well in practice.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Semi-supervised Subspace Learning and Application to Human Functional Magnetic Brain Resonance Imaging Data

Shelton, J.

Biologische Kybernetik, Eberhard Karls Universität, Tübingen, Germany, July 2010 (diplomathesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Solving Large-Scale Nonnegative Least Squares

Sra, S.

16th Conference of the International Linear Algebra Society (ILAS), June 2010 (talk)

Abstract
We study the fundamental problem of nonnegative least squares. This problem was apparently introduced by Lawson and Hanson [1] under the name NNLS. As is evident from its name, NNLS seeks least-squares solutions that are also nonnegative. Owing to its wide-applicability numerous algorithms have been derived for NNLS, beginning from the active-set approach of Lawson and Han- son [1] leading up to the sophisticated interior-point method of Bellavia et al. [2]. We present a new algorithm for NNLS that combines projected subgradients with the non-monotonic gradient descent idea of Barzilai and Borwein [3]. Our resulting algorithm is called BBSG, and we guarantee its convergence by ex- ploiting properties of NNLS in conjunction with projected subgradients. BBSG is surprisingly simple and scales well to large problems. We substantiate our claims by empirically evaluating BBSG and comparing it with established con- vex solvers and specialized NNLS algorithms. The numerical results suggest that BBSG is a practical method for solving large-scale NNLS problems.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


no image
Gaussian Mixture Modeling with Gaussian Process Latent Variable Models

Nickisch, H., Rasmussen, C.

Max Planck Institute for Biological Cybernetics, June 2010 (techreport)

Abstract
Density modeling is notoriously difficult for high dimensional data. One approach to the problem is to search for a lower dimensional manifold which captures the main characteristics of the data. Recently, the Gaussian Process Latent Variable Model (GPLVM) has successfully been used to find low dimensional manifolds in a variety of complex data. The GPLVM consists of a set of points in a low dimensional latent space, and a stochastic map to the observed space. We show how it can be interpreted as a density model in the observed space. However, the GPLVM is not trained as a density model and therefore yields bad density estimates. We propose a new training strategy and obtain improved generalisation performance and better density estimates in comparative evaluations on several benchmark data sets.

ei

Web [BibTex]

Web [BibTex]


no image
Matrix Approximation Problems

Sra, S.

EU Regional School: Rheinisch-Westf{\"a}lische Technische Hochschule Aachen, May 2010 (talk)

ei

PDF AVI [BibTex]

PDF AVI [BibTex]


no image
BCI2000 and Python

Hill, NJ.

Invited lecture at the 7th International BCI2000 Workshop, Pacific Grove, CA, USA, May 2010 (talk)

Abstract
A tutorial, with exercises, on how to integrate your own Python code with the BCI2000 realtime software package.

ei

PDF [BibTex]

PDF [BibTex]