17 results (BibTeX)

1995


A computational model for shape from texture for multiple textures

Black, M. J., Rosenholtz, R.

Investigative Ophthalmology and Visual Science Supplement, Vol. 36, No. 4, pages: 2202, March 1995 (conference)

ps

abstract [BibTex]

1995


abstract [BibTex]


Thumb md bildschirmfoto 2013 01 14 um 11.24.02
Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion

Black, M. J., Yacoob, Y.

In Fifth International Conf. on Computer Vision, ICCV’95, pages: 347-381, Boston, MA, June 1995 (inproceedings)

Abstract
This paper explores the use of local parametrized models of image motion for recovering and recognizing the non-rigid and articulated motion of human faces. Parametric flow models (for example affine) are popular for estimating motion in rigid scenes. We observe that within local regions in space and time, such models not only accurately model non-rigid facial motions but also provide a concise description of the motion in terms of a small number of parameters. These parameters are intuitively related to the motion of facial features during facial expressions and we show how expressions such as anger, happiness, surprise, fear, disgust and sadness can be recognized from the local parametric motions in the presence of significant head motion. The motion tracking and expression recognition approach performs with high accuracy in extensive laboratory experiments involving 40 subjects as well as in television and movie sequences.

ps

pdf video publisher site [BibTex]

pdf video publisher site [BibTex]


Thumb md bildschirmfoto 2013 01 14 um 11.06.54
Recognizing facial expressions under rigid and non-rigid facial motions using local parametric models of image motion

Black, M. J., Yacoob, Y.

In International Workshop on Automatic Face- and Gesture-Recognition, Zurich, July 1995 (inproceedings)

ps

video abstract [BibTex]

video abstract [BibTex]


The PLAYBOT Project

Tsotsos, J., Dickinson, S., Jenkin, M., Milios, E., Jepson, A., Down, B., Amdur, E., Stevenson, S., Black, M. J., Metaxas, D., Cooperstock, J., Culhane, S., Nuflo, F., Verghese, G., Wai, W., Wilkes, D., Ye, Y.

In Proc. IJCAI Workshop on AI Applications for Disabled People, Montreal, August 1995 (inproceedings)

ps

abstract [BibTex]

abstract [BibTex]


Thumb md bildschirmfoto 2013 01 14 um 10.58.31
Robust estimation of multiple surface shapes from occluded textures

Black, M. J., Rosenholtz, R.

In International Symposium on Computer Vision, pages: 485-490, Miami, FL, November 1995 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb md patentc
Image segmentation using robust mixture models

Black, M. J., Jepson, A.

US Pat. 5,802,203, June 1995 (patent)

ps

pdf on-line at USPTO [BibTex]

pdf on-line at USPTO [BibTex]


Suppression and creation of chaos in a periodically forced Lorenz system.

Franz, MO. Zhang, MH.

Physical Review, E 52, pages: 3558-3565, 1995 (article)

Abstract
Periodic forcing is introduced into the Lorenz model to study the effects of time-dependent forcing on the behavior of the system. Such a nonautonomous system stays dissipative and has a bounded attracting set which all trajectories finally enter. The possible kinds of attracting sets are restricted to periodic orbits and strange attractors. A large-scale survey of parameter space shows that periodic forcing has mainly three effects in the Lorenz system depending on the forcing frequency: (i) Fixed points are replaced by oscillations around them; (ii) resonant periodic orbits are created both in the stable and the chaotic region; (iii) chaos is created in the stable region near the resonance frequency and in periodic windows. A comparison to other studies shows that part of this behavior has been observed in simulations of higher truncations and real world experiments. Since very small modulations can already have a considerable effect, this suggests that periodic processes such as annual or diurnal cycles should not be omitted even in simple climate models.

ei

[BibTex]

[BibTex]


A New Method for Constructing Artificial Neural Networks

Vapnik, V., Burges, C., Schölkopf, B.

AT & T Bell Laboratories, 1995 (techreport)

ei

[BibTex]

[BibTex]


Image segmentation from motion: just the loss of high-spatial-frequency content ?

Wichmann, F., Henning, G.

Perception, 24, pages: S19, 1995 (poster)

Abstract
The human contrast sensitivity function (CSF) is bandpass for stimuli of low temporal frequency but, for moving stimuli, results in a low-pass CSF with large high spatial-frequency losses. Thus the high spatial-frequency content of images moving on the retina cannot be seen; motion perception could be facilitated by, or even be based on, the selective loss of high spatial-frequency content. 2-AFC image segmentation experiments were conducted with segmentation based on motion or on form. In the latter condition, the form difference mirrored that produced by moving stimuli. This was accomplished by generating stimulus elements which were spectrally either broadband or low-pass. For the motion used, the spectral difference between static broadband and static low-pass elements matched the spectral difference between moving and static broadband elements. On the hypothesis that segmentation from motion is based on the detection of regions devoid of high spatial-frequencies, both tasks should be similarly difficult for human observers. However, neither image segmentation (nor, incidentally, motion detection) was sensitive to the high spatial-frequency content of the stimuli. Thus changes in perceptual form produced by moving stimuli appear not to be used as a cue for image segmentation.

ei

[BibTex]


View-based cognitive map learning by an autonomous robot

Mallot, H., Bülthoff, H., Georg, P., Schölkopf, B., Yasuhara, K.

In Proceedings International Conference on Artificial Neural Networks, vol. 2, pages: 381-386, (Editors: Fogelman-Soulié, F.), EC2, Paris, France, Conférence Internationale sur les Réseaux de Neurones Artificiels (ICANN '95), October 1995 (inproceedings)

Abstract
This paper presents a view-based approach to map learning and navigation in mazes. By means of graph theory we have shown that the view-graph is a sufficient representation for map behaviour such as path planning. A neural network for unsupervised learning of the view-graph from sequences of views is constructed. We use a modified Kohonen (1988) learning rule that transforms temporal sequence (rather than featural similarity) into connectedness. In the main part of the paper, we present a robot implementation of the scheme. The results show that the proposed network is able to support map behaviour in simple environments.

ei

PDF [BibTex]

PDF [BibTex]


Extracting support data for a given task

Schölkopf, B., Burges, C., Vapnik, V.

In First International Conference on Knowledge Discovery & Data Mining (KDD-95), pages: 252-257, (Editors: UM Fayyad and R Uthurusamy), AAAI Press, Menlo Park, CA, USA, August 1995 (inproceedings)

Abstract
We report a novel possibility for extracting a small subset of a data base which contains all the information necessary to solve a given classification task: using the Support Vector Algorithm to train three different types of handwritten digit classifiers, we observed that these types of classifiers construct their decision surface from strongly overlapping small (k: 4%) subsets of the data base. This finding opens up the possibiiity of compressing data bases significantly by disposing of the data which is not important for the solution of a given task. In addition, we show that the theory allows us to predict the classifier that will have the best generalization ability, based solely on performance on the training set and characteristics of the learning machines. This finding is important for cases where the amount of available data is limited.

ei

PDF [BibTex]

PDF [BibTex]


Batting a ball: Dynamics of a rhythmic skill

Sternad, D., Schaal, S., Atkeson, C.

In Studies in Perception and Action, pages: 119-122, (Editors: Bardy, B.;Bostma, R.;Guiard, Y.), Erlbaum, Hillsdayle, NJ, 1995, clmc (inbook)

am

[BibTex]

[BibTex]


Memory-based neural networks for robot learning

Atkeson, C., Schaal, S.

Neurocomputing, 9, pages: 1-27, 1995, clmc (article)

Abstract
This paper explores a memory-based approach to robot learning, using memory-based neural networks to learn models of the task to be performed. Steinbuch and Taylor presented neural network designs to explicitly store training data and do nearest neighbor lookup in the early 1960s. In this paper their nearest neighbor network is augmented with a local model network, which fits a local model to a set of nearest neighbors. This network design is equivalent to a statistical approach known as locally weighted regression, in which a local model is formed to answer each query, using a weighted regression in which nearby points (similar experiences) are weighted more than distant points (less relevant experiences). We illustrate this approach by describing how it has been used to enable a robot to learn a difficult juggling task. Keywords: memory-based, robot learning, locally weighted regression, nearest neighbor, local models.

am

link (url) [BibTex]

link (url) [BibTex]


A kendama learning robot based on a dynamic optimization theory

Miyamoto, H., Gandolfo, F., Gomi, H., Schaal, S., Koike, Y., Osu, R., Nakano, E., Kawato, M.

In Preceedings of the 4th IEEE International Workshop on Robot and Human Communication (RO-MAN’95), pages: 327-332, Tokyo, July 1995, clmc (inproceedings)

am

[BibTex]

[BibTex]


View-Based Cognitive Mapping and Path Planning

Schölkopf, B., Mallot, H.

Adaptive Behavior, 3(3):311-348, January 1995 (article)

Abstract
This article presents a scheme for learning a cognitive map of a maze from a sequence of views and movement decisions. The scheme is based on an intermediate representation called the view graph, whose nodes correspond to the views whereas the labeled edges represent the movements leading from one view to another. By means of a graph theoretical reconstruction method, the view graph is shown to carry complete information on the topological and directional structure of the maze. Path planning can be carried out directly in the view graph without actually performing this reconstruction. A neural network is presented that learns the view graph during a random exploration of the maze. It is based on an unsupervised competitive learning rule translating temporal sequence (rather than similarity) of views into connectedness in the network. The network uses its knowledge of the topological and directional structure of the maze to generate expectations about which views are likely to be encountered next, improving the view-recognition performance. Numerical simulations illustrate the network's ability for path planning and the recognition of views degraded by random noise. The results are compared to findings of behavioral neuroscience.

ei

Web DOI [BibTex]

Web DOI [BibTex]