375 results (BibTeX)

2007


no image
Guided Self-organisation for Autonomous Robot Development

Martius, G., Herrmann, J. M., Der, R.

In Advances in Artificial Life 9th European Conference, ECAL 2007, 4648, pages: 766-775, LNCS, Springer, 2007 (inproceedings)

al

[BibTex]

2007


[BibTex]


no image
Less Conservative Polytopic LPV Models for Charge Control by Combining Parameter Set Mapping and Set Intersection

Kwiatkowski, A., Trimpe, S., Werner, H.

In Proceedings of the 46th IEEE Conference on Decision and Control, 2007 (inproceedings)

am

DOI [BibTex]

DOI [BibTex]


no image
Pattern detection

Blake, A., Romdhani, S., Schölkopf, B., Torr, P. H. S.

United States Patent, No 7236626, June 2007 (patent)

ei

[BibTex]

[BibTex]


no image
Learning static Gestalt laws through dynamic experience

Ostrovsky, Y., Wulff, J., Sinha, P.

Journal of Vision, 7(9):315-315, ARVO, June 2007 (article)

Abstract
The Gestalt laws (Wertheimer 1923) are widely regarded as the rules that help us parse the world into objects. However, it is unclear as to how these laws are acquired by an infant's visual system. Classically, these “laws” have been presumed to be innate (Kellman and Spelke 1983). But, more recent work in infant development, showing the protracted time-course over which these grouping principles emerge (e.g., Johnson and Aslin 1995; Craton 1996), suggests that visual experience might play a role in their genesis. Specifically, our studies of patients with late-onset vision (Project Prakash; VSS 2006) and evidence from infant development both point to an early role of common motion cues for object grouping. Here we explore the possibility that the privileged status of motion in the developmental timeline is not happenstance, but rather serves to bootstrap the learning of static Gestalt cues. Our approach involves computational analyses of real-world motion sequences to investigate whether primitive optic flow information is correlated with static figural cues that could eventually come to serve as proxies for grouping in the form of Gestalt principles. We calculated local optic flow maps and then examined how similarity of motion across image patches co-varied with similarity of certain figural properties in static frames. Results indicate that patches with similar motion are much more likely to have similar luminance, color, and orientation as compared to patches with dissimilar motion vectors. This regularity suggests that, in principle, common motion extracted from dynamic visual experience can provide enough information to bootstrap region grouping based on luminance and color and contour continuation mechanisms in static scenes. These observations, coupled with the cited experimental studies, lend credence to the hypothesis that static Gestalt laws might be learned through a bootstrapping process based on early dynamic experience.

ps

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Ensemble spiking activity as a source of cortical control signals in individuals with tetraplegia

Simeral, J. D., Kim, S. P., Black, M. J., Donoghue, J. P., Hochberg, L. R.

Biomedical Engineering Society, BMES, september 2007 (conference)

ps

[BibTex]

[BibTex]


no image
Directional tuning in motor cortex of a person with ALS

Simeral, J. D., Donoghue, J. P., Black, M. J., Friehs, G. M., Brown, R. H., Krivickas, L. S., Hochberg, L. R.

Program No. 517.4. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]


no image
Toward standardized assessment of pointing devices for brain-computer interfaces

Donoghue, J., Simeral, J., Kim, S., G.M. Friehs, L. H., Black, M.

Program No. 517.16. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]


no image
Neural correlates of grip aperture in primary motor cortex

Vargas-Irwin, C., Shakhnarovich, G., Artemiadis, P., Donoghue, J. P., Black, M. J.

Program No. 517.10. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]


no image
Point-and-click cursor control by a person with tetraplegia using an intracortical neural interface system

Kim, S., Simeral, J. D., Hochberg, L. R., Friehs, G., Donoghue, J. P., Black, M. J.

Program No. 517.2. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]


no image
AREADNE Research in Encoding And Decoding of Neural Ensembles

Shakhnarovich, G., Hochberg, L. R., Donoghue, J. P., Stein, J., Brown, R. H., Krivickas, L. S., Friehs, G. M., Black, M. J.

Program No. 517.8. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

ps

[BibTex]

[BibTex]


Thumb xl screen shot 2012 02 23 at 1.59.51 pm
Learning Appearances with Low-Rank SVM

Wolf, L., Jhuang, H., Hazan, T.

In Conference on Computer Vision and Pattern Recognition (CVPR), 2007 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl alg
A Biologically Inspired System for Action Recognition

Jhuang, H., Serre, T., Wolf, L., Poggio, T.

In International Conference on Computer Vision (ICCV), 2007 (inproceedings)

ps

code pdf [BibTex]

code pdf [BibTex]


Thumb xl screen shot 2012 06 06 at 11.20.23 am
Deterministic Annealing for Multiple-Instance Learning

Gehler, P., Chapelle, O.

In Artificial Intelligence and Statistics (AIStats), 2007 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl floweval
A Database and Evaluation Methodology for Optical Flow

Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, October 2007 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl srf
Steerable random fields

(Best Paper Award, INI-Graphics Net, 2008)

Roth, S., Black, M. J.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, 2007 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl ijcvflow2
On the spatial statistics of optical flow

Roth, S., Black, M. J.

International Journal of Computer Vision, 74(1):33-50, 2007 (article)

Abstract
We present an analysis of the spatial and temporal statistics of "natural" optical flow fields and a novel flow algorithm that exploits their spatial statistics. Training flow fields are constructed using range images of natural scenes and 3D camera motions recovered from hand-held and car-mounted video sequences. A detailed analysis of optical flow statistics in natural scenes is presented and machine learning methods are developed to learn a Markov random field model of optical flow. The prior probability of a flow field is formulated as a Field-of-Experts model that captures the spatial statistics in overlapping patches and is trained using contrastive divergence. This new optical flow prior is compared with previous robust priors and is incorporated into a recent, accurate algorithm for dense optical flow computation. Experiments with natural and synthetic sequences illustrate how the learned optical flow prior quantitatively improves flow accuracy and how it captures the rich spatial structure found in natural scene motion.

ps

pdf preprint pdf from publisher [BibTex]

pdf preprint pdf from publisher [BibTex]


Thumb xl arrayhd
Assistive technology and robotic control using MI ensemble-based neural interface systems in humans with tetraplegia

Donoghue, J. P., Nurmikko, A., Black, M. J., Hochberg, L.

Journal of Physiology, Special Issue on Brain Computer Interfaces, 579, pages: 603-611, 2007 (article)

Abstract
This review describes the rationale, early stage development, and initial human application of neural interface systems (NISs) for humans with paralysis. NISs are emerging medical devices designed to allowpersonswith paralysis to operate assistive technologies or to reanimatemuscles based upon a command signal that is obtained directly fromthe brain. Such systems require the development of sensors to detect brain signals, decoders to transformneural activity signals into a useful command, and an interface for the user.We review initial pilot trial results of an NIS that is based on an intracortical microelectrode sensor that derives control signals from the motor cortex.We review recent findings showing, first, that neurons engaged by movement intentions persist in motor cortex years after injury or disease to the motor system, and second, that signals derived from motor cortex can be used by persons with paralysis to operate a range of devices. We suggest that, with further development, this form of NIS holds promise as a useful new neurotechnology for those with limited motor function or communication.We also discuss the additional potential for neural sensors to be used in the diagnosis and management of various neurological conditions and as a new way to learn about human brain function.

ps

pdf preprint pdf from publisher DOI [BibTex]

pdf preprint pdf from publisher DOI [BibTex]


Thumb xl implant
Probabilistically modeling and decoding neural population activity in motor cortex

Black, M. J., Donoghue, J. P.

In Toward Brain-Computer Interfacing, pages: 147-159, (Editors: Dornhege, G. and del R. Millan, J. and Hinterberger, T. and McFarland, D. and Muller, K.-R.), MIT Press, London, 2007 (incollection)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl pedestal
Neuromotor prosthesis development

Donoghue, J., Hochberg, L., Nurmikko, A., Black, M., Simeral, J., Friehs, G.

Medicine & Health Rhode Island, 90(1):12-15, January 2007 (article)

Abstract
Article describes a neuromotor prosthesis (NMP), in development at Brown University, that records human brain signals, decodes them, and transforms them into movement commands. An NMP is described as a system consisting of a neural interface, a decoding system, and a user interface, also called an effector; a closed-loop system would be completed by a feedback signal from the effector to the brain. The interface is based on neural spiking, a source of information-rich, rapid, complex control signals from the nervous system. The NMP described, named BrainGate, consists of a match-head sized platform with 100 thread-thin electrodes implanted just into the surface of the motor cortex where commands to move the hand emanate. Neural signals are decoded by a rack of computers that displays the resultant output as the motion of a cursor on a computer monitor. While computer cursor motion represents a form of virtual device control, this same command signal could be routed to a device to command motion of paralyzed muscles or the actions of prosthetic limbs. The researchers’ overall goal is the development of a fully implantable, wireless multi-neuron sensor for broad research, neural prosthetic, and human neurodiagnostic applications.

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl mabuse
Denoising archival films using a learned Bayesian model

Moldovan, T. M., Roth, S., Black, M. J.

(CS-07-03), Brown University, Department of Computer Science, 2007 (techreport)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl ner07
Multi-state decoding of point-and-click control signals from motor cortical activity in a human with tetraplegia

Kim, S., Simeral, J., Hochberg, L., Donoghue, J. P., Friehs, G., Black, M. J.

In The 3rd International IEEE EMBS Conference on Neural Engineering, pages: 486-489, May 2007 (inproceedings)

Abstract
Basic neural-prosthetic control of a computer cursor has been recently demonstrated by Hochberg et al. [1] using the BrainGate system (Cyberkinetics Neurotechnology Systems, Inc.). While these results demonstrate the feasibility of intracortically-driven prostheses for humans with paralysis, a practical cursor-based computer interface requires more precise cursor control and the ability to “click” on areas of interest. Here we present a practical point and click device that decodes both continuous states (e.g. cursor kinematics) and discrete states (e.g. click state) from single neural population in human motor cortex. We describe a probabilistic multi-state decoder and the necessary training paradigms that enable point and click cursor control by a human with tetraplegia using an implanted microelectrode array. We present results from multiple recording sessions and quantify the point and click performance.

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl aperture
Decoding grasp aperture from motor-cortical population activity

Artemiadis, P., Shakhnarovich, G., Vargas-Irwin, C., Donoghue, J. P., Black, M. J.

In The 3rd International IEEE EMBS Conference on Neural Engineering, pages: 518-521, May 2007 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb xl cvpr07scape
Detailed human shape and pose from images

Balan, A., Sigal, L., Black, M. J., Davis, J., Haussecker, H.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, pages: 1-8, Minneapolis, June 2007 (inproceedings)

ps

pdf YouTube [BibTex]

pdf YouTube [BibTex]


Thumb xl iccv07b
Shining a light on human pose: On shadows, shading and the estimation of pose and shape,

Balan, A., Black, M. J., Haussecker, H., Sigal, L.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, October 2007 (inproceedings)

ps

pdf YouTube [BibTex]

pdf YouTube [BibTex]


no image
The role of the striatum in adaptation learning: a computational model

Grosse-Wentrup, M., Contreras-Vidal, J.

Biological Cybernetics, 96(4):377-388, April 2007 (article)

Abstract
To investigate the functional role of the striatum in visuo-motor adaptation, we extend the DIRECT-model for visuo-motor reaching movements formulated by Bullock et al.(J Cogn Neurosci 5:408–435,1993) through two parallel loops, each modeling a distinct contribution of the cortico–cerebellar–thalamo–cortical and the cortico–striato–thalamo–cortical networks to visuo-motor adaptation. Based on evidence of Robertson and Miall(Neuroreport 10(5): 1029–1034, 1999), we implement the function of the cortico–cerebellar–thalamo–cortical loop as a module that gradually adapts to small changes in sensorimotor relationships. The cortico–striato–thalamo–cortical loop on the other hand is hypothesized to act as an adaptive search element, guessing new sensorimotor-transformations and reinforcing successful guesses while punishing unsuccessful ones. In a first step, we show that the model reproduces trajectories and error curves of healthy subjects in a two dimensional center-out reaching task with rotated screen cursor visual feedback. In a second step, we disable learning processes in the cortico–striato– thalamo–cortical loop to simulate subjects with Parkinson’s disease (PD), and show that this leads to error curves typical of subjects with PD. We conclude that the results support our hypothesis, i.e., that the role of the cortico–striato–thalamo–cortical loop in visuo-motor adaptation is that of an adaptive search element.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Asymptotic stability of the solution of the M/MB/1 queueing model

Haji, A., Radl, A.

Computers and Mathematics with Applications, 53(9):1411-1420, May 2007 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
HPLC analysis and pharmacokinetic study of quercitrin and isoquercitrin in rat plasma after administration of Hypericum japonicum thunb. extract.

Li, J., Wang, W., Zhang, L., Chen, H., Bi, S.

Biomedical Chromatography, 22(4):374-378, December 2007 (article)

Abstract
A simple HPLC method was developed for determination of quercitrin and isoquercitrin in rat plasma. Reversed-phase HPLC was employed for the quantitative analysis using kaempferol-3-O--d-glucopyranoside-7-O--l-rhamnoside as an internal standard. Following extraction from the plasma samples with ethyl acetate-isopropanol (95:5, v/v), these two compounds were successfully separated on a Luna C18 column (250 × 4.6 mm, 5 µm) with isocratic elution of acetonitrile-0.5% aqueous acetic acid (17:83, v/v) as the mobile phase. The flow-rate was set at 1 mL/min and the eluent was detected at 350 nm for both quercitrin and isoquercitrin. The method was linear over the studied ranges of 50-6000 and 50-5000 ng/mL for quercitrin and isoquercitrin, respectively. The intra- and inter-day precisions of the analysis were better than 13.1 and 13.2%, respectively. The lower limits of quantitation for quercitrin and isoquercitrin in plasma were both of 50 ng/mL. The mean extraction recoveries were 73 and 61% for quercitrin and i soquercitrin, respectively. The validated method was successfully applied to pharmacokinetic studies of the two analytes in rat plasma after the oral administration of Hypericum japonicum thunb. ethanol extract.

ei

Web DOI [BibTex]


no image
Competition and Coordination in Stochastic Games

Burkov, A., Boularias, A., Chaib-Draa, B.

In Canadian AI 2007, pages: 26-37, (Editors: Kobti, Z. , D. Wu), Springer, Berlin, Germany, 20th Conference of the Canadian Society for Computational Studies of Intelligence, May 2007 (inproceedings)

Abstract
Agent competition and coordination are two classical and most important tasks in multiagent systems. In recent years, there was a number of learning algorithms proposed to resolve such type of problems. Among them, there is an important class of algorithms, called adaptive learning algorithms, that were shown to be able to converge in self-play to a solution in a wide variety of the repeated matrix games. Although certain algorithms of this class, such as Infinitesimal Gradient Ascent (IGA), Policy Hill-Climbing (PHC) and Adaptive Play Q-learning (APQ), have been catholically studied in the recent literature, a question of how these algorithms perform versus each other in general form stochastic games is remaining little-studied. In this work we are trying to answer this question. To do that, we analyse these algorithms in detail and give a comparative analysis of their behavior on a set of competition and coordination stochastic games. Also, we introduce a new multiagent learning algorithm, called ModIGA. This is an extension of the IGA algorithm, which is able to estimate the strategy of its opponents in the cases when they do not explicitly play mixed strategies (e.g., APQ) and which can be applied to the games with more than two actions.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Exploring model selection techniques for nonlinear dimensionality reduction

Harmeling, S.

(EDI-INF-RR-0960), School of Informatics, University of Edinburgh, March 2007 (techreport)

Abstract
Nonlinear dimensionality reduction (NLDR) methods have become useful tools for practitioners who are faced with the analysis of high-dimensional data. Of course, not all NLDR methods are equally applicable to a particular dataset at hand. Thus it would be useful to come up with model selection criteria that help to choose among different NLDR algorithms. This paper explores various approaches to this problem and evaluates them on controlled data sets. Comprehensive experiments will show that model selection scores based on stability are not useful, while scores based on Gaussian processes are helpful for the NLDR problem.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Benchmarking of Policy Gradient Methods

Peters, J.

ADPRL Workshop, April 2007 (talk)

ei

[BibTex]

[BibTex]


no image
Fusion of spectral and spatial information by a novel SVM classification technique

Bruzzone, L., Marconcini, M., Persello, C.

In pages: 4838-4841 , IEEE, Piscataway, NJ, USA, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 2007 (inproceedings)

Abstract
A novel context-sensitive semisupervised classification technique based on support vector machines is proposed. This technique aims at exploiting the SVM method for image classification by properly fusing spectral information with spatial- context information. This results in: i) an increased robustness to noisy training sets in the learning phase of the classifier; ii) a higher and more stable classification accuracy with respect to the specific patterns included in the training set; and iii) a regularized classification map. The main property of the proposed context sensitive semisupervised SVM (CS4VM) is to adaptively exploit the contextual information in the training phase of the classifier, without any critical assumption on the expected labels of the pixels included in the same neighborhood system. This is done by defining a novel context-sensitive term in the objective function used in the learning of the classifier. In addition, the proposed CS4VM can be integrated with a Markov random field (MRF) approach for exploiting the contextual information also to regularize the classification map. Experiments carried out on very high geometrical resolution images confirmed the effectiveness of the proposed technique.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
MR Angiography of Dural Arteriovenous Fistulas: Diagnosis and Follow-Up after Treatment Using a Time-Resolved 3D Contrast-Enhanced Technique

Meckel, S., Maier, M., San Millan Ruiz, D., Yilmaz, H., Scheffler, K., Radü, E., Wetzel, S.

American Journal of Neuroradiology, 28(5):877-884, May 2007 (article)

Abstract
BACKGROUND AND PURPOSE: Digital subtraction angiography (DSA) is the method of reference for imaging of dural arteriovenous fistula (DAVF). The goal of this study was to analyze the value of different MR images including 3D contrast-enhanced MR angiography (MRA) with a high temporal resolution in diagnostic and follow-up imaging of DAVFs. MATERIALS AND METHODS: A total of 18 MR/MRA examinations from 14 patients with untreated (n = 9) and/or treated (n = 9) DAVFs were evaluated. Two observers assessed all MR and MRA investigations for signs indicating the presence of a DAVF, for fistula characteristics such as fistula grading, location of fistulous point, and fistula obliteration after treatment. All results were compared with DSA findings. RESULTS: On time-resolved 3D contrast-enhanced (TR 3D) MRA, the side and presence of all patent fistulas (n = 13) were correctly indicated, and no false-positive findings were observed in occluded DAVFs (n = 5). Grading of fistulas with this imaging technique was correct in 77% and 85% of patent fistulas for both readers, respectively. On T2-weighted images, signs indicative of a DAVF were encountered only in fistulas with cortical venous reflux (56%), whereas on 3D time-of-flight (TOF) MRA, most fistulas (88%) were correctly detected. In complete fistula occlusion, false-positive findings were encountered on both T2-weighted images and on TOF MRA images. CONCLUSION: In this study, TR 3D MRA proved reliable in detecting DAVFs and suitable for follow-up imaging. The technique allowed—within limitations—to grade DAVFs. Although 3D TOF MRA can depict signs of DAVFs, its value for follow-up imaging is limited.

ei

Web [BibTex]

Web [BibTex]


no image
Independent Factor Reinforcement Learning for Portfolio Management

Li, J., Zhang, K., Chan, L.

In Proceedings of the 8th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2007), pages: 1020-1031, (Editors: H Yin and P Tiño and E Corchado and W Byrne and X Yao), Springer, Berlin, Germany, 8th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), 2007 (inproceedings)

ei

Web [BibTex]

Web [BibTex]


no image
Uncertain 3D Force Fields in Reaching Movements: Do Humans Favor Robust or Average Performance?

Mistry, M., Theodorou, E., Hoffmann, H., Schaal, S.

In Abstracts of the 37th Meeting of the Society of Neuroscience, 2007, clmc (inproceedings)

am

PDF [BibTex]

PDF [BibTex]


no image
Towards Machine Learning of Motor Skills

Peters, J., Schaal, S., Schölkopf, B.

In Proceedings of Autonome Mobile Systeme (AMS), pages: 138-144, (Editors: K Berns and T Luksch), 2007, clmc (inproceedings)

Abstract
Autonomous robots that can adapt to novel situations has been a long standing vision of robotics, artificial intelligence, and cognitive sciences. Early approaches to this goal during the heydays of artificial intelligence research in the late 1980s, however, made it clear that an approach purely based on reasoning or human insights would not be able to model all the perceptuomotor tasks that a robot should fulfill. Instead, new hope was put in the growing wake of machine learning that promised fully adaptive control algorithms which learn both by observation and trial-and-error. However, to date, learning techniques have yet to fulfill this promise as only few methods manage to scale into the high-dimensional domains of manipulator robotics, or even the new upcoming trend of humanoid robotics, and usually scaling was only achieved in precisely pre-structured domains. In this paper, we investigate the ingredients for a general approach to motor skill learning in order to get one step closer towards human-like performance. For doing so, we study two ma jor components for such an approach, i.e., firstly, a theoretically well-founded general approach to representing the required control structures for task representation and execution and, secondly, appropriate learning algorithms which can be applied in this setting.

am ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Applying the episodic natural actor-critic architecture to motor primitive learning

Peters, J., Schaal, S.

In Proceedings of the 2007 European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, April 25-27, 2007, clmc (inproceedings)

Abstract
In this paper, we investigate motor primitive learning with the Natural Actor-Critic approach. The Natural Actor-Critic consists out of actor updates which are achieved using natural stochastic policy gradients while the critic obtains the natural policy gradient by linear regression. We show that this architecture can be used to learn the Òbuilding blocks of movement generationÓ, called motor primitives. Motor primitives are parameterized control policies such as splines or nonlinear differential equations with desired attractor properties. We show that our most modern algorithm, the Episodic Natural Actor-Critic outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic robot arm.

am

link (url) [BibTex]

link (url) [BibTex]


no image
The new robotics - towards human-centered machines

Schaal, S.

HFSP Journal Frontiers of Interdisciplinary Research in the Life Sciences, 1(2):115-126, 2007, clmc (article)

Abstract
Research in robotics has moved away from its primary focus on industrial applications. The New Robotics is a vision that has been developed in past years by our own university and many other national and international research instiutions and addresses how increasingly more human-like robots can live among us and take over tasks where our current society has shortcomings. Elder care, physical therapy, child education, search and rescue, and general assistance in daily life situations are some of the examples that will benefit from the New Robotics in the near future. With these goals in mind, research for the New Robotics has to embrace a broad interdisciplinary approach, ranging from traditional mathematical issues of robotics to novel issues in psychology, neuroscience, and ethics. This paper outlines some of the important research problems that will need to be resolved to make the New Robotics a reality.

am

link (url) [BibTex]

link (url) [BibTex]


no image
A computational model of human trajectory planning based on convergent flow fields

Hoffman, H., Schaal, S.

In Abstracts of the 37st Meeting of the Society of Neuroscience, San Diego, CA, Nov. 3-7, 2007, clmc (inproceedings)

Abstract
A popular computational model suggests that smooth reaching movements are generated in humans by minimizing a difference vector between hand and target in visual coordinates (Shadmehr and Wise, 2005). To achieve such a task, the optimal joint accelerations may be pre-computed. However, this pre-planning is inflexible towards perturbations of the limb, and there is strong evidence that reaching movements can be modified on-line at any moment during the movement. Thus, next-state planning models (Bullock and Grossberg, 1988) have been suggested that compute the current control command from a function of the goal state such that the overall movement smoothly converges to the goal (see Shadmehr and Wise (2005) for an overview). So far, these models have been restricted to simple point-to-point reaching movements with (approximately) straight trajectories. Here, we present a computational model for learning and executing arbitrary trajectories that combines ideas from pattern generation with dynamic systems and the observation of convergent force fields, which control a frog leg after spinal stimulation (Giszter et al., 1993). In our model, we incorporate the following two observations: first, the orientation of vectors in a force field is invariant over time, but their amplitude is modulated by a time-varying function, and second, two force fields add up when stimulated simultaneously (Giszter et al., 1993). This addition of convergent force fields varying over time results in a virtual trajectory (a moving equilibrium point) that correlates with the actual leg movement (Giszter et al., 1993). Our next-state planner is a set of differential equations that provide the desired end-effector or joint accelerations using feedback of the current state of the limb. These accelerations can be interpreted as resulting from a damped spring that links the current limb position with a virtual trajectory. This virtual trajectory can be learned to realize any desired limb trajectory and velocity profile, and learning is efficient since the time-modulated sum of convergent force fields equals a sum of weighted basis functions (Gaussian time pulses). Thus, linear algebra is sufficient to compute these weights, which correspond to points on the virtual trajectory. During movement execution, the differential equation corrects automatically for perturbations and brings back smoothly the limb towards the goal. Virtual trajectories can be rescaled and added allowing to build a set of movement primitives to describe movements more complex than previously learned. We demonstrate the potential of the suggested model by learning and generating a wide variety of movements.

am

[BibTex]

[BibTex]


no image
Bayesian Reconstruction of the Density of States

Habeck, M.

Physical Review Letters, 98(20, 200601):1-4, May 2007 (article)

Abstract
A Bayesian framework is developed to reconstruct the density of states from multiple canonical simulations. The framework encompasses the histogram reweighting method of Ferrenberg and Swendsen. The new approach applies to nonparametric as well as parametric models and does not require simulation data to be discretized. It offers a means to assess the precision of the reconstructed density of states and of derived thermodynamic quantities.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
A unifying framework for robot control with redundant DOFs

Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., Schaal, S.

Autonomous Robots, 24(1):1-12, October 2007 (article)

Abstract
Recently, Udwadia (Proc. R. Soc. Lond. A 2003:1783–1800, 2003) suggested to derive tracking controllers for mechanical systems with redundant degrees-of-freedom (DOFs) using a generalization of Gauss’ principle of least constraint. This method allows reformulating control problems as a special class of optimal controllers. In this paper, we take this line of reasoning one step further and demonstrate that several well-known and also novel nonlinear robot control laws can be derived from this generic methodology. We show experimental verifications on a Sarcos Master Arm robot for some of the derived controllers. The suggested approach offers a promising unification and simplification of nonlinear control law design for robots obeying rigid body dynamics equations, both with or without external constraints, with over-actuation or underactuation, as well as open-chain and closed-chain kinematics.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


no image
Improving the Caenorhabditis elegans Genome Annotation Using Machine Learning

Rätsch, G., Sonnenburg, S., Srinivasan, J., Witte, H., Müller, K., Sommer, R., Schölkopf, B.

PLoS Computational Biology, 3(2, e20):0313-0322, February 2007 (article)

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., LeCun, Y., Müller, K., Pereira, F., Rasmussen, C., Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., Williamson, R.

Journal of Machine Learning Research, 8, pages: 2443-2466, October 2007 (article)

Abstract
Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
The Independent Components of Natural Images are Perceptually Dependent

Bethge, M., Wiecki, T., Wichmann, F.

In Human Vision and Electronic Imaging XII, pages: 1-12, (Editors: Rogowitz, B. E.), SPIE, Bellingham, WA, USA, SPIE Human Vision and Electronic Imaging Conference, February 2007 (inproceedings)

Abstract
The independent components of natural images are a set of linear filters which are optimized for statistical independence. With such a set of filters images can be represented without loss of information. Intriguingly, the filter shapes are localized, oriented, and bandpass, resembling important properties of V1 simple cell receptive fields. Here we address the question of whether the independent components of natural images are also perceptually less dependent than other image components. We compared the pixel basis, the ICA basis and the discrete cosine basis by asking subjects to interactively predict missing pixels (for the pixel basis) or to predict the coefficients of ICA and DCT basis functions in patches of natural images. Like Kersten (1987) we find the pixel basis to be perceptually highly redundant but perhaps surprisingly, the ICA basis showed significantly higher perceptual dependencies than the DCT basis. This shows a dissociation between statistical and perceptual dependence measures.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Online-Computation Approach to Optimal Control of Noise-Affected Nonlinear Systems with Continuous State and Control Spaces

Deisenroth, MP., Weissel, F., Ohtsuka, T., Hanebeck, UD.

In ECC‘07, pages: 3664-3671, 9th European Control Conference, July 2007 (inproceedings)

Abstract
A novel online-computation approach to optimal control of nonlinear, noise-affected systems with continuous state and control spaces is presented. In the proposed algorithm, system noise is explicitly incorporated into the control decision. This leads to superior results compared to state-of-the-art nonlinear controllers that neglect this influence. The solution of an optimal nonlinear controller for a corresponding deterministic system is employed to find a meaningful state space restriction. This restriction is obtained by means of approximate state prediction using the noisy system equation. Within this constrained state space, an optimal closed-loop solution for a finite decision-making horizon (prediction horizon) is determined within an adaptively restricted optimization space. Interleaving stochastic dynamic programming and value function approximation yields a solution to the considered optimal control problem. The enhanced performance of the proposed discrete-time controller is illustrated by means o f a scalar example system. Nonlinear model predictive control is applied to address approximate treatment of infinite-horizon problems by the finite-horizon controller.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Change-Point Detection using Krylov Subspace Learning

Ide, T., Tsuda, K.

In SDM 2007, pages: 515-520, (Editors: Apte, C. ), Society for Industrial and Applied Mathematics, Pittsburgh, PA, USA, SIAM International Conference on Data Mining, April 2007 (inproceedings)

Abstract
We propose an efficient algorithm for principal component analysis (PCA) that is applicable when only the inner product with a given vector is needed. We show that Krylov subspace learning works well both in matrix compression and implicit calculation of the inner product by taking full advantage of the arbitrariness of the seed vector. We apply our algorithm to a PCA-based change-point detection algorithm, and show that it results in about 50 times improvement in computational time.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Inducing Metric Violations in Human Similarity Judgements

Laub, J., Macke, J., Müller, K., Wichmann, F.

In Advances in Neural Information Processing Systems 19, pages: 777-784, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
Attempting to model human categorization and similarity judgements is both a very interesting but also an exceedingly difficult challenge. Some of the difficulty arises because of conflicting evidence whether human categorization and similarity judgements should or should not be modelled as to operate on a mental representation that is essentially metric. Intuitively, this has a strong appeal as it would allow (dis)similarity to be represented geometrically as distance in some internal space. Here we show how a single stimulus, carefully constructed in a psychophysical experiment, introduces l2 violations in what used to be an internal similarity space that could be adequately modelled as Euclidean. We term this one influential data point a conflictual judgement. We present an algorithm of how to analyse such data and how to identify the crucial point. Thus there may not be a strict dichotomy between either a metric or a non-metric internal space but rather degrees to which potentially large subsets of stimuli are represented metrically with a small subset causing a global violation of metricity.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Towards compliant humanoids: an experimental assessment of suitable task space position/orientation controllers

Nakanishi, J., Mistry, M., Peters, J., Schaal, S.

In IROS 2007, 2007, pages: 2520-2527, (Editors: Grant, E. , T. C. Henderson), IEEE Service Center, Piscataway, NJ, USA, IEEE/RSJ International Conference on Intelligent Robots and Systems, November 2007 (inproceedings)

Abstract
Compliant control will be a prerequisite for humanoid robotics if these robots are supposed to work safely and robustly in human and/or dynamic environments. One view of compliant control is that a robot should control a minimal number of degrees-of-freedom (DOFs) directly, i.e., those relevant DOFs for the task, and keep the remaining DOFs maximally compliant, usually in the null space of the task. This view naturally leads to task space control. However, surprisingly few implementations of task space control can be found in actual humanoid robots. This paper makes a first step towards assessing the usefulness of task space controllers for humanoids by investigating which choices of controllers are available and what inherent control characteristics they have—this treatment will concern position and orientation control, where the latter is based on a quaternion formulation. Empirical evaluations on an anthropomorphic Sarcos master arm illustrate the robustness of the different controllers as well as the eas e of implementing and tuning them. Our extensive empirical results demonstrate that simpler task space controllers, e.g., classical resolved motion rate control or resolved acceleration control can be quite advantageous in face of inevitable modeling errors in model-based control, and that well chosen formulations are easy to implement and quite robust, such that they are useful for humanoids.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
Cross-Validation Optimization for Large Scale Hierarchical Classification Kernel Methods

Seeger, M.

In Advances in Neural Information Processing Systems 19, pages: 1233-1240, (Editors: Schölkopf, B. , J. Platt, T. Hofmann), MIT Press, Cambridge, MA, USA, Twentieth Annual Conference on Neural Information Processing Systems (NIPS), September 2007 (inproceedings)

Abstract
We propose a highly efficient framework for kernel multi-class models with a large and structured set of classes. Kernel parameters are learned automatically by maximizing the cross-validation log likelihood, and predictive probabilities are estimated. We demonstrate our approach on large scale text classification tasks with hierarchical class structure, achieving state-of-the-art results in an order of magnitude less time than previous work.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Supervised Feature Selection via Dependence Estimation

Song, L., Smola, A., Gretton, A., Borgwardt, K., Bedo, J.

In Proceedings of the 24th Annual International Conference on Machine Learning (ICML 2007), pages: 823-830, (Editors: Ghahramani, Z. ), ACM Press, New York, NY, USA, Twenty-Fourth Annual International Conference on Machine Learning (ICML), June 2007 (inproceedings)

Abstract
We introduce a framework for filtering features that employs the Hilbert-Schmidt Independence Criterion (HSIC) as a measure of dependence between the features and the labels. The key idea is that good features should maximise such dependence. Feature selection for various supervised learning problems (including classification and regression) is unified under this framework, and the solutions can be approximated using a backward-elimination algorithm. We demonstrate the usefulness of our method on both artificial and real world datasets.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
A Kernel-Based Causal Learning Algorithm

Sun, X., Janzing, D., Schölkopf, B., Fukumizu, K.

In Proceedings of the 24th International Conference on Machine Learning, pages: 855-862, (Editors: Z Ghahramani), ACM Press, New York, NY, USA, ICML, June 2007 (inproceedings)

Abstract
We describe a causal learning method, which employs measuring the strength of statistical dependences in terms of the Hilbert-Schmidt norm of kernel-based cross-covariance operators. Following the line of the common faithfulness assumption of constraint-based causal learning, our approach assumes that a variable Z is likely to be a common effect of X and Y, if conditioning on Z increases the dependence between X and Y. Based on this assumption, we collect "votes" for hypothetical causal directions and orient the edges by the majority principle. In most experiments with known causal structures, our method provided plausible results and outperformed the conventional constraint-based PC algorithm.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]