179 results (BibTeX)

2006


Thumb md bioprint
Molecular Modeling for the BioPrint Pharmaco-informatics Platform

Berenz, V., Tillier, F., Barbosa, F., Boryeu, M., Horvath, D., Froloff, N.

2006 (poster)

am

[BibTex]

2006


[BibTex]


Pattern detection methods and systems and face detection methods and systems

Blake, A., Romdhani, S., Schölkopf, B., Torr, P.

United States Patent, No 7099504, August 2006 (patent)

ei

[BibTex]

[BibTex]


Interactive images

Schölkopf, B., Toyama, K., Uyttendaele, M.

United States Patent, No 7120293, October 2006 (patent)

ei

[BibTex]

[BibTex]


Acquiring web page information without commitment to downloading the web page

Heilbron, L., Platt, J., Schölkopf, B., Simard, P.

United States Patent, No 7155489, December 2006 (patent)

ei

[BibTex]

[BibTex]


Thumb md bildschirmfoto 2013 01 16 um 10.16.16
Hierarchical Approach for Articulated 3D Pose-Estimation and Tracking (extended abstract)

Sigal, L., Black, M. J.

In Learning, Representation and Context for Human Sensing in Video Workshop (in conjunction with CVPR), 2006 (inproceedings)

ps

pdf poster [BibTex]

pdf poster [BibTex]


Finding directional movement representations in motor cortical neural populations using nonlinear manifold learning

WorKim, S., Simeral, J., Jenkins, O., Donoghue, J., Black, M. J.

World Congress on Medical Physics and Biomedical Engineering 2006, Seoul, Korea, August 2006 (conference)

ps

[BibTex]

[BibTex]


Modeling neural control of physically realistic movement

Shaknarovich, G., Kim, S., Donoghue, J., Hocherberg, L., Friehs, G., Mukand, J., Chen, D., Black, M. J.

Program No. 256.12. 2006 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Atlanta, GA, 2006, Online (conference)

ps

[BibTex]

[BibTex]


A comparison of decoding models for imagined motion from human motor cortex

Kim, S., Simeral, J., Donoghue, J., Hocherberg, L., Friehs, G., Mukand, J., Chen, D., Black, M. J.

Program No. 256.11. 2006 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Atlanta, GA, 2006, Online (conference)

ps

[BibTex]

[BibTex]


Thumb md neuralcomp
Bayesian population decoding of motor cortical activity using a Kalman filter

Wu, W., Gao, Y., Bienenstock, E., Donoghue, J., Black, M. J.

Neural Computation, 18(1):80-118, 2006 (article)

Abstract
Effective neural motor prostheses require a method for decoding neural activity representing desired movement. In particular, the accurate reconstruction of a continuous motion signal is necessary for the control of devices such as computer cursors, robots, or a patient's own paralyzed limbs. For such applications, we developed a real-time system that uses Bayesian inference techniques to estimate hand motion from the firing rates of multiple neurons. In this study, we used recordings that were previously made in the arm area of primary motor cortex in awake behaving monkeys using a chronically implanted multielectrode microarray. Bayesian inference involves computing the posterior probability of the hand motion conditioned on a sequence of observed firing rates; this is formulated in terms of the product of a likelihood and a prior. The likelihood term models the probability of firing rates given a particular hand motion. We found that a linear gaussian model could be used to approximate this likelihood and could be readily learned from a small amount of training data. The prior term defines a probabilistic model of hand kinematics and was also taken to be a linear gaussian model. Decoding was performed using a Kalman filter, which gives an efficient recursive method for Bayesian inference when the likelihood and prior are linear and gaussian. In off-line experiments, the Kalman filter reconstructions of hand trajectory were more accurate than previously reported results. The resulting decoding algorithm provides a principled probabilistic model of motor-cortical coding, decodes hand motion in real time, provides an estimate of uncertainty, and is straightforward to implement. Additionally the formulation unifies and extends previous models of neural coding while providing insights into the motor-cortical code.

ps

pdf preprint pdf from publisher abstract [BibTex]

pdf preprint pdf from publisher abstract [BibTex]


How to choose the covariance for Gaussian process regression independently of the basis

Franz, M., Gehler, P.

In Proceedings of the Workshop Gaussian Processes in Practice, Workshop Gaussian Processes in Practice (GPIP), 2006 (inproceedings)

ei ps

pdf [BibTex]

pdf [BibTex]


Thumb md screen shot 2012 06 06 at 11.31.38 am
Implicit Wiener Series, Part II: Regularised estimation

Gehler, P., Franz, M.

(148), Max Planck Institute, 2006 (techreport)

ei ps

pdf [BibTex]

pdf [BibTex]


Thumb md screen shot 2012 06 06 at 11.30.03 am
The rate adapting poisson model for information retrieval and object recognition

Gehler, P., Holub, A., Welling, M.

In Proceedings of the 23rd international conference on Machine learning, pages: 337-344, ICML ’06, ACM, New York, NY, USA, 2006 (inproceedings)

ei ps

project page pdf DOI [BibTex]

project page pdf DOI [BibTex]


Thumb md screen shot 2012 06 06 at 11.15.02 am
Products of “Edge-perts”

Gehler, P., Welling, M.

In Advances in Neural Information Processing Systems 18, pages: 419-426, (Editors: Weiss, Y. and Sch"olkopf, B. and Platt, J.), MIT Press, Cambridge, MA, 2006 (incollection)

ps

pdf [BibTex]

pdf [BibTex]


Thumb md biorob
Statistical analysis of the non-stationarity of neural population codes

Kim, S., Wood, F., Fellows, M., Donoghue, J., Black, M. J.

In BioRob 2006, The first IEEE / RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 295-299, Pisa, Italy, Febuary 2006 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb md amdo
Predicting 3D people from 2D pictures

(Best Paper)

Sigal, L., Black, M. J.

In Proc. IV Conf. on Articulated Motion and DeformableObjects (AMDO), LNCS 4069, pages: 185-195, July 2006 (inproceedings)

Abstract
We propose a hierarchical process for inferring the 3D pose of a person from monocular images. First we infer a learned view-based 2D body model from a single image using non-parametric belief propagation. This approach integrates information from bottom-up body-part proposal processes and deals with self-occlusion to compute distributions over limb poses. Then, we exploit a learned Mixture of Experts model to infer a distribution of 3D poses conditioned on 2D poses. This approach is more general than recent work on inferring 3D pose directly from silhouettes since the 2D body model provides a richer representation that includes the 2D joint angles and the poses of limbs that may be unobserved in the silhouette. We demonstrate the method in a laboratory setting where we evaluate the accuracy of the 3D poses against ground truth data. We also estimate 3D body pose in a monocular image sequence. The resulting 3D estimates are sufficiently accurate to serve as proposals for the Bayesian inference of 3D human motion over time

ps

pdf pdf from publisher Video [BibTex]

pdf pdf from publisher Video [BibTex]


Thumb md iwcm
Tracking complex objects using graphical object models

Sigal, L., Zhu, Y., Comaniciu, D., Black, M. J.

In International Workshop on Complex Motion, LNCS 3417, pages: 223-234, Springer-Verlag, 2006 (inproceedings)

ps

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Thumb md specular
Specular flow and the recovery of surface structure

Roth, S., Black, M. J.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 2, pages: 1869-1876, New York, NY, June 2006 (inproceedings)

Abstract
In scenes containing specular objects, the image motion observed by a moving camera may be an intermixed combination of optical flow resulting from diffuse reflectance (diffuse flow) and specular reflection (specular flow). Here, with few assumptions, we formalize the notion of specular flow, show how it relates to the 3D structure of the world, and develop an algorithm for estimating scene structure from 2D image motion. Unlike previous work on isolated specular highlights we use two image frames and estimate the semi-dense flow arising from the specular reflections of textured scenes. We parametrically model the image motion of a quadratic surface patch viewed from a moving camera. The flow is modeled as a probabilistic mixture of diffuse and specular components and the 3D shape is recovered using an Expectation-Maximization algorithm. Rather than treating specular reflections as noise to be removed or ignored, we show that the specular flow provides additional constraints on scene geometry that improve estimation of 3D structure when compared with reconstruction from diffuse flow alone. We demonstrate this for a set of synthetic and real sequences of mixed specular-diffuse objects.

ps

pdf [BibTex]

pdf [BibTex]


Thumb md evatr
HumanEva: Synchronized video and motion capture dataset for evaluation of articulated human motion

Sigal, L., Black, M. J.

(CS-06-08), Brown University, Department of Computer Science, 2006 (techreport)

ps

pdf abstract [BibTex]

pdf abstract [BibTex]


Thumb md balaniccv06
An adaptive appearance model approach for model-based articulated object tracking

Balan, A., Black, M. J.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 1, pages: 758-765, New York, NY, June 2006 (inproceedings)

Abstract
The detection and tracking of three-dimensional human body models has progressed rapidly but successful approaches typically rely on accurate foreground silhouettes obtained using background segmentation. There are many practical applications where such information is imprecise. Here we develop a new image likelihood function based on the visual appearance of the subject being tracked. We propose a robust, adaptive, appearance model based on the Wandering-Stable-Lost framework extended to the case of articulated body parts. The method models appearance using a mixture model that includes an adaptive template, frame-to-frame matching and an outlier process. We employ an annealed particle filtering algorithm for inference and take advantage of the 3D body model to predict self occlusion and improve pose estimation accuracy. Quantitative tracking results are presented for a walking sequence with a 180 degree turn, captured with four synchronized and calibrated cameras and containing significant appearance changes and self-occlusion in each view.

ps

pdf [BibTex]

pdf [BibTex]


Thumb md springs2
Nonlinear physically-based models for decoding motor-cortical population activity

Shakhnarovich, G., Kim, S., Black, M. J.

In Advances in Neural Information Processing Systems 19, NIPS-2006, pages: 1257-1264, MIT Press, 2006 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb md silly
Measure locally, reason globally: Occlusion-sensitive articulated pose estimation

Sigal, L., Black, M. J.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 2, pages: 2041-2048, New York, NY, June 2006 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb md spikes
A non-parametric Bayesian approach to spike sorting

Wood, F., Goldwater, S., Black, M. J.

In International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pages: 1165-1169, New York, NY, August 2006 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb md film
Denoising archival films using a learned Bayesian model

Moldovan, T., Roth, S., Black, M. J.

In Int. Conf. on Image Processing, ICIP, pages: 2641-2644, Atlanta, 2006 (inproceedings)

ps

pdf [BibTex]

pdf [BibTex]


Thumb md bp
Efficient belief propagation with learned higher-order Markov random fields

Lan, X., Roth, S., Huttenlocher, D., Black, M. J.

In European Conference on Computer Vision, ECCV, II, pages: 269-282, Graz, Austria, 2006 (inproceedings)

ps

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Factorial coding of natural images: how effective are linear models in removing higher-order dependencies?

Bethge, M.

Journal of the Optical Society of America A, 23(6):1253-1268, June 2006 (article)

Abstract
The performance of unsupervised learning models for natural images is evaluated quantitatively by means of information theory. We estimate the gain in statistical independence (the multi-information reduction) achieved with independent component analysis (ICA), principal component analysis (PCA), zero-phase whitening, and predictive coding. Predictive coding is translated into the transform coding framework, where it can be characterized by the constraint of a triangular filter matrix. A randomly sampled whitening basis and the Haar wavelet are included into the comparison as well. The comparison of all these methods is carried out for different patch sizes, ranging from 2x2 to 16x16 pixels. In spite of large differences in the shape of the basis functions, we find only small differences in the multi-information between all decorrelation transforms (5% or less) for all patch sizes. Among the second-order methods, PCA is optimal for small patch sizes and predictive coding performs best for large patch sizes. The extra gain achieved with ICA is always less than 2%. In conclusion, the `edge filters‘ found with ICA lead only to a surprisingly small improvement in terms of its actual objective.

ei

PDF Web [BibTex]

PDF Web [BibTex]


An Online Support Vector Machine for Abnormal Events Detection

Davy, M., Desobry, F., Gretton, A., Doncarli, C.

Signal Processing, 86(8):2009-2025, August 2006 (article)

Abstract
The ability to detect online abnormal events in signals is essential in many real-world Signal Processing applications. Previous algorithms require an explicit signal statistical model, and interpret abnormal events as statistical model abrupt changes. Corresponding implementation relies on maximum likelihood or on Bayes estimation theory with generally excellent performance. However, there are numerous cases where a robust and tractable model cannot be obtained, and model-free approaches need to be considered. In this paper, we investigate a machine learning, descriptor-based approach that does not require an explicit descriptors statistical model, based on Support Vector novelty detection. A sequential optimization algorithm is introduced. Theoretical considerations as well as simulations on real signals demonstrate its practical efficiency.

ei

PDF PostScript PDF DOI [BibTex]

PDF PostScript PDF DOI [BibTex]


Classification of Faces in Man and Machine

Graf, A., Wichmann, F., Bülthoff, H., Schölkopf, B.

Neural Computation, 18(1):143-165, January 2006 (article)

ei

PDF Web [BibTex]

PDF Web [BibTex]


SCARNA: Fast and Accurate Structural Alignment of RNA Sequences by Matching Fixed-Length Stem Fragments

Tabei, Y., Tsuda, K., Kin, T., Asai, K.

Bioinformatics, 22(14):1723-1729, May 2006 (article)

Abstract
The functions of non-coding RNAs are strongly related to their secondary structures, but it is known that a secondary structure prediction of a single sequence is not reliable. Therefore, we have to collect similar RNA sequences with a common secondary structure for the analyses of a new non-coding RNA without knowing the exact secondary structure itself. Therefore, the sequence comparison in searching similar RNAs should consider not only their sequence similarities but their potential secondary structures. Sankoff‘s algorithm predicts the common secondary structures of the sequences, but it is computationally too expensive to apply to large-scale analyses. Because we often want to compare a large number of cDNA sequences or to search similar RNAs in the whole genome sequences, much faster algorithms are required. We propose a new method of comparing RNA sequences based on the structural alignments of the fixed-length fragments of the stem candidates. The implemented software, SCARNA (Stem Candidate Aligner for RNAs), is fast enough to apply to the long sequences in the large-scale analyses. The accuracy of the alignments is better or comparable to the much slower existing algorithms.

ei

PDF Web DOI [BibTex]


Conformal Multi-Instance Kernels

Blaschko, M., Hofmann, T.

In NIPS 2006 Workshop on Learning to Compare Examples, pages: 1-6, NIPS Workshop on Learning to Compare Examples, December 2006 (inproceedings)

Abstract
In the multiple instance learning setting, each observation is a bag of feature vectors of which one or more vectors indicates membership in a class. The primary task is to identify if any vectors in the bag indicate class membership while ignoring vectors that do not. We describe here a kernel-based technique that defines a parametric family of kernels via conformal transformations and jointly learns a discriminant function over bags together with the optimal parameter settings of the kernel. Learning a conformal transformation effectively amounts to weighting regions in the feature space according to their contribution to classification accuracy; regions that are discriminative will be weighted higher than regions that are not. This allows the classifier to focus on regions contributing to classification accuracy while ignoring regions that correspond to vectors found both in positive and in negative bags. We show how parameters of this transformation can be learned for support vector machines by posing the problem as a multiple kernel learning problem. The resulting multiple instance classifier gives competitive accuracy for several multi-instance benchmark datasets from different domains.

ei

PDF Web [BibTex]

PDF Web [BibTex]


A Continuation Method for Semi-Supervised SVMs

Chapelle, O., Chi, M., Zien, A.

In ICML 2006, pages: 185-192, (Editors: Cohen, W. W., A. Moore), ACM Press, New York, NY, USA, 23rd International Conference on Machine Learning, June 2006 (inproceedings)

Abstract
Semi-Supervised Support Vector Machines (S3VMs) are an appealing method for using unlabeled data in classification: their objective function favors decision boundaries which do not cut clusters. However their main problem is that the optimization problem is non-convex and has many local minima, which often results in suboptimal performances. In this paper we propose to use a global optimization technique known as continuation to alleviate this problem. Compared to other algorithms minimizing the same objective function, our continuation method often leads to lower test errors.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Statistical Convergence of Kernel CCA

Fukumizu, K., Bach, F., Gretton, A.

In Advances in neural information processing systems 18, pages: 387-394, (Editors: Weiss, Y. , B. Schölkopf, J. Platt), MIT Press, Cambridge, MA, USA, Nineteenth Annual Conference on Neural Information Processing Systems (NIPS), May 2006 (inproceedings)

Abstract
While kernel canonical correlation analysis (kernel CCA) has been applied in many problems, the asymptotic convergence of the functions estimated from a finite sample to the true functions has not yet been established. This paper gives a rigorous proof of the statistical convergence of kernel CCA and a related method (NOCCO), which provides a theoretical justification for these methods. The result also gives a sufficient condition on the decay of the regularization coefficient in the methods to ensure convergence.

ei

PDF Web [BibTex]

PDF Web [BibTex]


Learning an Interest Operator from Human Eye Movements

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

In CVPWR 2006, pages: page 24, (Editors: C Schmid and S Soatto and C Tomasi), IEEE Computer Society, Los Alamitos, CA, USA, 2006 Conference on Computer Vision and Pattern Recognition Workshop, April 2006 (inproceedings)

Abstract
We present an approach for designing interest operators that are based on human eye movement statistics. In contrast to existing methods which use hand-crafted saliency measures, we use machine learning methods to infer an interest operator directly from eye movement data. That way, the operator provides a measure of biologically plausible interestingness. We describe the data collection, training, and evaluation process, and show that our learned saliency measure significantly accounts for human eye movements. Furthermore, we illustrate connections to existing interest operators, and present a multi-scale interest point detector based on the learned function.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


Evaluating Predictive Uncertainty Challenge

Quinonero Candela, J., Rasmussen, C., Sinz, F., Bousquet, O., Schölkopf, B.

In Machine Learning Challenges: Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment, pages: 1-27, (Editors: J Quiñonero Candela and I Dagan and B Magnini and F d’Alché-Buc), Springer, Berlin, Germany, First PASCAL Machine Learning Challenges Workshop (MLCW), April 2006 (inproceedings)

Abstract
This Chapter presents the PASCAL Evaluating Predictive Uncertainty Challenge, introduces the contributed Chapters by the participants who obtained outstanding results, and provides a discussion with some lessons to be learnt. The Challenge was set up to evaluate the ability of Machine Learning algorithms to provide good “probabilistic predictions”, rather than just the usual “point predictions” with no measure of uncertainty, in regression and classification problems. Parti-cipants had to compete on a number of regression and classification tasks, and were evaluated by both traditional losses that only take into account point predictions and losses we proposed that evaluate the quality of the probabilistic predictions.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


A Linear Programming Approach for Molecular QSAR analysis

Saigo, H., Kadowaki, T., Tsuda, K.

In MLG 2006, pages: 85-96, (Editors: Gärtner, T. , G. C. Garriga, T. Meinl), International Workshop on Mining and Learning with Graphs, September 2006, Best Paper Award (inproceedings)

Abstract
Small molecules in chemistry can be represented as graphs. In a quantitative structure-activity relationship (QSAR) analysis, the central task is to find a regression function that predicts the activity of the molecule in high accuracy. Setting a QSAR as a primal target, we propose a new linear programming approach to the graph-based regression problem. Our method extends the graph classification algorithm by Kudo et al. (NIPS 2004), which is a combination of boosting and graph mining. Instead of sequential multiplicative updates, we employ the linear programming boosting (LP) for regression. The LP approach allows to include inequality constraints for the parameter vector, which turns out to be particularly useful in QSAR tasks where activity values are sometimes unavailable. Furthermore, the efficiency is improved significantly by employing multiple pricing.

ei

PDF PDF [BibTex]

PDF PDF [BibTex]


Incremental Aspect Models for Mining Document Streams

Surendran, A., Sra, S.

In PKDD 2006, pages: 633-640, (Editors: Fürnkranz, J. , T. Scheffer, M. Spiliopoulou), Springer, Berlin, Germany, 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, September 2006 (inproceedings)

Abstract
In this paper we introduce a novel approach for incrementally building aspect models, and use it to dynamically discover underlying themes from document streams. Using the new approach we present an application which we call “query-line tracking” i.e., we automatically discover and summarize different themes or stories that appear over time, and that relate to a particular query. We present evaluation on news corpora to demonstrate the strength of our method for both query-line tracking, online indexing and clustering.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Prediction of Protein Function from Networks

Shin, H., Tsuda, K.

In Semi-Supervised Learning, pages: 361-376, Adaptive Computation and Machine Learning, (Editors: Chapelle, O. , B. Schölkopf, A. Zien), MIT Press, Cambridge, MA, USA, November 2006 (inbook)

Abstract
In computational biology, it is common to represent domain knowledge using graphs. Frequently there exist multiple graphs for the same set of nodes, representing information from different sources, and no single graph is sufficient to predict class labels of unlabelled nodes reliably. One way to enhance reliability is to integrate multiple graphs, since individual graphs are partly independent and partly complementary to each other for prediction. In this chapter, we describe an algorithm to assign weights to multiple graphs within graph-based semi-supervised learning. Both predicting class labels and searching for weights for combining multiple graphs are formulated into one convex optimization problem. The graph-combining method is applied to functional class prediction of yeast proteins.When compared with individual graphs, the combined graph with optimized weights performs significantly better than any single graph.When compared with the semidefinite programming-based support vector machine (SDP/SVM), it shows comparable accuracy in a remarkably short time. Compared with a combined graph with equal-valued weights, our method could select important graphs without loss of accuracy, which implies the desirable property of integration with selectivity.

ei

Web [BibTex]

Web [BibTex]


A tutorial on spectral clustering

von Luxburg, U.

(149), Max Planck Institute for Biological Cybernetics, Tübingen, August 2006 (techreport)

Abstract
In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. Nevertheless, on the first glance spectral clustering looks a bit mysterious, and it is not obvious to see why it works at all and what it really does. This article is a tutorial introduction to spectral clustering. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.

ei

PDF [BibTex]

PDF [BibTex]


Classification of natural scenes: Critical features revisited

Drewes, J., Wichmann, F., Gegenfurtner, K.

Journal of Vision, 6(6):561, 6th Annual Meeting of the Vision Sciences Society (VSS), June 2006 (poster)

Abstract
Human observers are capable of detecting animals within novel natural scenes with remarkable speed and accuracy. Despite the seeming complexity of such decisions it has been hypothesized that a simple global image feature, the relative abundance of high spatial frequencies at certain orientations, could underly such fast image classification (A. Torralba & A. Oliva, Network: Comput. Neural Syst., 2003). We successfully used linear discriminant analysis to classify a set of 11.000 images into “animal” and “non-animal” images based on their individual amplitude spectra only (Drewes, Wichmann, Gegenfurtner VSS 2005). We proceeded to sort the images based on the performance of our classifier, retaining only the best and worst classified 400 images (“best animals”, “best distractors” and “worst animals”, “worst distractors”). We used a Go/No-go paradigm to evaluate human performance on this subset of our images. Both reaction time and proportion of correctly classified images showed a significant effect of classification difficulty. Images more easily classified by our algorithm were also classified faster and better by humans, as predicted by the Torralba & Oliva hypothesis. We then equated the amplitude spectra of the 400 images, which, by design, reduced algorithmic performance to chance whereas human performance was only slightly reduced (cf. Wichmann, Rosas, Gegenfurtner, VSS 2005). Most importantly, the same images as before were still classified better and faster, suggesting that even in the original condition features other than specifics of the amplitude spectrum made particular images easy to classify, clearly at odds with the Torralba & Oliva hypothesis.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Some observations on the pedestal effect or dipper function

Henning, B., Wichmann, F.

Journal of Vision, 6(13):50, 2006 Fall Vision Meeting of the Optical Society of America, December 2006 (poster)

Abstract
The pedestal effect is the large improvement in the detectabilty of a sinusoidal “signal” grating observed when the signal is added to a masking or “pedestal” grating of the same spatial frequency, orientation, and phase. We measured the pedestal effect in both broadband and notched noise - noise from which a 1.5-octave band centred on the signal frequency had been removed. Although the pedestal effect persists in broadband noise, it almost disappears in the notched noise. Furthermore, the pedestal effect is substantial when either high- or low-pass masking noise is used. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies different from that of the signal and pedestal. The spatial-frequency components of the notched noise above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. Thus the pedestal or dipper effect measured without notched noise is not a characteristic of individual spatial-frequency tuned channels.

ei

Web DOI [BibTex]

Web DOI [BibTex]


Learning Eye Movements

Kienzle, W., Wichmann, F., Schölkopf, B., Franz, M.

Sensory Coding And The Natural Environment, 2006, pages: 1, September 2006 (poster)

Abstract
The human visual system samples images through saccadic eye movements which rapidly change the point of fixation. Although the selection of eye movement targets depends on numerous top-down mechanisms, a number of recent studies have shown that low-level image features such as local contrast or edges play an important role. These studies typically used predefined image features which were afterwards experimentally verified. Here, we follow a complementary approach: instead of testing a set of candidate image features, we infer these hypotheses from the data, using methods from statistical learning. To this end, we train a non-linear classifier on fixated vs. randomly selected image patches without making any physiological assumptions. The resulting classifier can be essentially characterized by a nonlinear combination of two center-surround receptive fields. We find that the prediction performance of this simple model on our eye movement data is indistinguishable from the physiologically motivated model of Itti & Koch (2000) which is far more complex. In particular, we obtain a comparable performance without using any multi-scale representations, long-range interactions or oriented image features.

ei

Web [BibTex]

Web [BibTex]


The Pedestal Effect is Caused by Off-Frequency Looking, not Nonlinear Transduction or Contrast Gain-Control

Wichmann, F., Henning, G.

9, pages: 174, 9th T{\"u}bingen Perception Conference (TWK), March 2006 (poster)

Abstract
The pedestal or dipper effect is the large improvement in the detectability of a sinusoidal grating observed when the signal is added to a pedestal or masking grating having the signal‘s spatial frequency, orientation, and phase. The effect is largest with pedestal contrasts just above the ‘threshold’ in the absence of a pedestal. We measured the pedestal effect in both broadband and notched masking noise---noise from which a 1.5-octave band centered on the signal and pedestal frequency had been removed. The pedestal effect persists in broadband noise, but almost disappears with notched noise. The spatial-frequency components of the notched noise that lie above and below the spatial frequency of the signal and pedestal prevent the use of information about changes in contrast carried in channels tuned to spatial frequencies that are very much different from that of the signal and pedestal. We conclude that the pedestal effect in the absence of notched noise results principally from the use of information derived from channels with peak sensitivities at spatial frequencies that are different from that of the signal and pedestal. Thus the pedestal or dipper effect is not a characteristic of individual spatial-frequency tuned channels.

ei

Web [BibTex]

Web [BibTex]


A Kernel Method for the Two-Sample-Problem

Gretton, A., Borgwardt, K., Rasch, M., Schölkopf, B., Smola, A.

20th Annual Conference on Neural Information Processing Systems (NIPS), December 2006 (talk)

Abstract
We propose two statistical tests to determine if two samples are from different distributions. Our test statistic is in both cases the distance between the means of the two samples mapped into a reproducing kernel Hilbert space (RKHS). The first test is based on a large deviation bound for the test statistic, while the second is based on the asymptotic distribution of this statistic. We show that the test statistic can be computed in $O(m^2)$ time. We apply our approach to a variety of problems, including attribute matching for databases using the Hungarian marriage method, where our test performs strongly. We also demonstrate excellent performance when comparing distributions over graphs, for which no alternative tests currently exist.

ei

PDF [BibTex]

PDF [BibTex]


MCMC inference in (Conditionally) Conjugate Dirichlet Process Gaussian Mixture Models

Rasmussen, C., Görür, D.

ICML Workshop on Learning with Nonparametric Bayesian Methods, June 2006 (talk)

Abstract
We compare the predictive accuracy of the Dirichlet Process Gaussian mixture models using conjugate and conditionally conjugate priors and show that better density models result from using the wider class of priors. We explore several MCMC schemes exploiting conditional conjugacy and show their computational merits on several multidimensional density estimation problems.

ei

Web [BibTex]

Web [BibTex]


Ab-initio gene finding using machine learning

Schweikert, G., Zeller, G., Zien, A., Ong, C., de Bona, F., Sonnenburg, S., Phillips, P., Rätsch, G.

NIPS Workshop on New Problems and Methods in Computational Biology, December 2006 (talk)

ei

Web [BibTex]

Web [BibTex]


Semi-Supervised Learning

Zien, A.

Advanced Methods in Sequence Analysis Lectures, November 2006 (talk)

ei

Web [BibTex]

Web [BibTex]


From outliers to prototypes: Ordering data

Harmeling, S., Dornhege, G., Tax, D., Meinecke, F., Müller, K.

Neurocomputing, 69(13-15):1608-1618, August 2006 (article)

Abstract
We propose simple and fast methods based on nearest neighbors that order objects from high-dimensional data sets from typical points to untypical points. On the one hand, we show that these easy-to-compute orderings allow us to detect outliers (i.e. very untypical points) with a performance comparable to or better than other often much more sophisticated methods. On the other hand, we show how to use these orderings to detect prototypes (very typical points) which facilitate exploratory data analysis algorithms such as noisy nonlinear dimensionality reduction and clustering. Comprehensive experiments demonstrate the validity of our approach.

ei

PDF PDF DOI [BibTex]

PDF PDF DOI [BibTex]


Global Biclustering of Microarray Data

Wolf, T., Brors, B., Hofmann, T., Georgii, E.

In ICDMW 2006, pages: 125-129, (Editors: Tsumoto, S. , C. W. Clifton, N. Zhong, X. Wu, J. Liu, B. W. Wah, Y.-M. Cheung), IEEE Computer Society, Los Alamitos, CA, USA, Sixth IEEE International Conference on Data Mining, December 2006 (inproceedings)

Abstract
We consider the problem of simultaneously clustering genes and conditions of a gene expression data matrix. A bicluster is defined as a subset of genes that show similar behavior within a subset of conditions. Finding biclusters can be useful for revealing groups of genes involved in the same molecular process as well as groups of conditions where this process takes place. Previous work either deals with local, bicluster-based criteria or assumes a very specific structure of the data matrix (e.g. checkerboard or block-diagonal) [11]. In contrast, our goal is to find a set of flexibly arranged biclusters which is optimal in regard to a global objective function. As this is a NP-hard combinatorial problem, we describe several techniques to obtain approximate solutions. We benchmarked our approach successfully on the Alizadeh B-cell lymphoma data set [1].

ei

Web DOI [BibTex]

Web DOI [BibTex]


Extraction of visual features from natural video data using Slow Feature Analysis

Nickisch, H.

Biologische Kybernetik, Technische Universität Berlin, Berlin, Germany, September 2006 (diplomathesis)

Abstract
Das Forschungsprojekt NeuRoBot hat das un{\"u}berwachte Erlernen einer neuronal inspirierten Steuerungsarchitektur zum Ziel, und zwar unter den Randbedingungen biologischer Plausibilit{\"a}t und der Benutzung einer Kamera als einzigen Sensor. Visuelle Merkmale, die ein angemessenes Abbild der Umgebung liefern, sind unerl{\"a}sslich, um das Ziel kollisionsfreier Navigation zu erreichen. Zeitliche Koh{\"a}renz ist ein neues Lernprinzip, das in der Lage ist, Erkenntnisse aus der Biologie des Sehens zu reproduzieren. Es wird durch die Beobachtung motiviert, dass die “Sensoren” der Retina auf deutlich k{\"u}rzeren Zeitskalen variieren als eine abstrakte Beschreibung. Zeitliche Langsamkeitsanalyse l{\"o}st das Problem, indem sie zeitlich langsam ver{\"a}nderliche Signale aus schnell ver{\"a}nderlichen Eingabesignalen extrahiert. Eine Verallgemeinerung auf Signale, die nichtlinear von den Eingaben abh{\"a}ngen, ist durch die Anwendung des Kernel-Tricks m{\"o}glich. Das einzig benutzte Vorwissen ist die zeitliche Glattheit der gewonnenen Signale. In der vorliegenden Diplomarbeit wird Langsamkeitsanalyse auf Bildausschnitte von Videos einer Roboterkamera und einer Simulationsumgebung angewendet. Zuallererst werden mittels Parameterexploration und Kreuzvalidierung die langsamst m{\"o}glichen Funktionen bestimmt. Anschließend werden die Merkmalsfunktionen analysiert und einige Ansatzpunkte f{\"u}r ihre Interpretation angegeben. Aufgrund der sehr großen Datens{\"a}tze und der umfangreichen Berechnungen behandelt ein Großteil dieser Arbeit auch Aufwandsbetrachtungen und Fragen der effizienten Berechnung. Kantendetektoren in verschiedenen Phasen und mit haupts{\"a}chlich horizontaler Orientierung stellen die wichtigsten aus der Analyse hervorgehenden Funktionen dar. Eine Anwendung auf konkrete Navigationsaufgaben des Roboters konnte bisher nicht erreicht werden. Eine visuelle Interpretation der erlernten Merkmale ist jedoch durchaus gegeben.

ei

PDF [BibTex]

PDF [BibTex]


3DString: a feature string kernel for 3D object classification on voxelized data

Assfalg, J. Borgwardt, KM. Kriegel, H-P.

In pages: 198-207, (Editors: Yu, P.S. , V.J. Tsotras, E.A. Fox, B. Liu), ACM Press, New York, NY, USA, 15th ACM International Conference on Information and Knowledge Management (CIKM), November 2006 (inproceedings)

Abstract
Classification of 3D objects remains an important task in many areas of data management such as engineering, medicine or biology. As a common preprocessing step in current approaches to classification of voxelized 3D objects, voxel representations are transformed into a feature vector description.In this article, we introduce an approach of transforming 3D objects into feature strings which represent the distribution of voxels over the voxel grid. Attractively, this feature string extraction can be performed in linear runtime with respect to the number of voxels. We define a similarity measure on these feature strings that counts common k-mers in two input strings, which is referred to as the spectrum kernel in the field of kernel methods. We prove that on our feature strings, this similarity measure can be computed in time linear to the number of different characters in these strings. This linear runtime behavior makes our kernel attractive even for large datasets that occur in many application domains. Furthermore, we explain that our similarity measure induces a metric which allows to combine it with an M-tree for handling of large volumes of data. Classification experiments on two published benchmark datasets show that our novel approach is competitive with the best state-of-the-art methods for 3D object classification.

ei

DOI [BibTex]

DOI [BibTex]