Header logo is
Institute Talks

Dexterous and non contact micromanipulation for micro-nano-assembly and biomedical applications

Talk
  • 24 September 2018 • 09:30 10:30
  • Dr. Aude Bolopion and Dr. Mich
  • 2P4

This talk presents an overview of recent activities of FEMTO-ST institute in the field of micro-nanomanipulation fo both micro nano assembly and biomedical applications. Microrobotic systems are currently limited by the number of degree of freedom addressed and also are very limited by their throughput. Two ways can be considered to improve both the velocity and the degrees of freedom: non-contact manipulation and dexterous micromanipulation. Indeed in both ways movement including rotation and translation are done locally and are only limited by the micro-nano-objects inertia which is very low. It consequently enable to generate 6DOF and to induce high dynamics. The talk presents recent works which have shown that controlled trajectories in non contact manipulation enable to manipulate micro-objects in high speed. Dexterous manipulation on a 4 fingers microtweezers have been also experimented and show that in-hand micromanipulations are possible in micro-nanoscale based on original finger trajectory planning. These two approaches have been applied to perform micro-nano-assemby and biomedical operations

Learning to align images and surfaces

Talk
  • 24 September 2018 • 11:00 12:00
  • Iasonas Kokkinos
  • Ground Floor Seminar Room (N0.002)

In this talk I will be presenting recent work on combining ideas from deformable models with deep learning. I will start by describing DenseReg and DensePose, two recently introduced systems for establishing dense correspondences between 2D images and 3D surface models ``in the wild'', namely in the presence of background, occlusions, and multiple objects. For DensePose in particular we introduce DensePose-COCO, a large-scale dataset for dense pose estimation, and DensePose-RCNN, a system which operates at multiple frames per second on a single GPU while handling multiple humans simultaneously. I will then present Deforming AutoEncoders, a method for unsupervised dense correspondence estimation. We show that we can disentangle deformations from appearance variation in an entirely unsupervised manner, and also provide promising results for a more thorough disentanglement of images into deformations, albedo and shading. Time permitting we will discuss a parallel line of work aiming at combining grouping with deep learning, and see how both grouping and correspondence can be understood as establishing associations between neurons.

Organizers: Vassilis Choutas

Soft Feel by Soft Robotic Hand: New way of robotic sensing

IS Colloquium
  • 04 October 2018 • 13:30 - 04 September 2018 • 14:30
  • Prof. Koh Hosoda
  • MPI-IS Stuttgart, Werner-Köster lecture hall

This lecture will show some interesting examples how soft body/skin will change your idea of robotic sensing. Soft Robotics does not only discuss about compliance and safety; soft structure will change the way to categorize objects by dynamic exploration and enables the robot to learn sense of slip. Soft Robotics will entirely change your idea how to design sensing and open up a new way to understand human sensing.

Organizers: Ardian Jusufi

Medical Robots with a Haptic Touch – First Experiences with the FLEXMIN System

IS Colloquium
  • 04 October 2018 • 10:00 11:00
  • Prof. Peter Pott
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

The FLEXMIN haptic robotic system is a single-port tele-manipulator for robotic surgery in the small pelvis. Using a transanal approach it allows bi-manual tasks such as grasping, monopolar cutting, and suturing with a footprint of Ø 160 x 240 mm³. Forces up to 5 N in all direction can be applied easily. In addition to provide low latency and highly dynamic control over its movements, high-fidelity haptic feedback was realised using built-in force sensors, lightweight and friction-optimized kinematics as well as dedicated parallel kinematics input devices. After a brief description of the system and some of its key aspects, first evaluation results will be presented. In the second half of the talk the Institute of Medical Device Technology will be presented. The institute was founded in July 2017 and has ever since started a number of projects in the field of biomedical actuation, medical systems and robotics and advanced light microscopy. To illustrate this a few snapshots of bits and pieces will be presented that are condensation nuclei for the future.

Organizers: Katherine Kuchenbecker

Interactive and Effective Representation of Digital Content through Touch using Local Tactile Feedback

Talk
  • 05 October 2018 • 11:00 12:00
  • Mariacarla Memeo
  • MPI-IS Stuttgart, Heisenbergstr. 3, Room 2P4

The increasing availability of on-line resources and the widespread practice of storing data over the internet arise the problem of their accessibility for visually impaired people. A translation from the visual domain to the available modalities is therefore necessary to study if this access is somewhat possible. However, the translation of information from vision to touch is necessarily impaired due to the superiority of vision during the acquisition process. Yet, compromises exist as visual information can be simplified, sketched. A picture can become a map. An object can become a geometrical shape. Under some circumstances, and with a reasonable loss of generality, touch can substitute vision. In particular, when touch substitutes vision, data can be differentiated by adding a further dimension to the tactile feedback, i.e. extending tactile feedback to three dimensions instead of two. This mode has been chosen because it mimics our natural way of following object profiles with fingers. Specifically, regardless if a hand lying on an object is moving or not, our tactile and proprioceptive systems are both stimulated and tell us something about which object we are manipulating, what can be its shape and size. The goal of this talk is to describe how to exploit tactile stimulation to render digital information non visually, so that cognitive maps associated with this information can be efficiently elicited from visually impaired persons. In particular, the focus is to deliver geometrical information in a learning scenario. Moreover, a completely blind interaction with virtual environment in a learning scenario is something little investigated because visually impaired subjects are often passive agents of exercises with fixed environment constraints. For this reason, during the talk I will provide my personal answer to the question: can visually impaired people manipulate dynamic virtual content through touch? This process is much more challenging than only exploring and learning a virtual content, but at the same time it leads to a more conscious and dynamic creation of the spatial understanding of an environment during tactile exploration.

Organizers: Katherine Kuchenbecker

Autonomous Robots that Walk and Fly

Talk
  • 22 October 2018 • 11:00 12:00
  • Roland Siegwart
  • MPI, Lecture Hall 2D5, Heisenbergstraße 1, Stuttgart

While robots are already doing a wonderful job as factory workhorses, they are now gradually appearing in our daily environments and offering their services as autonomous cars, delivery drones, helpers in search and rescue and much more. This talk will present some recent highlights in the field of autonomous mobile robotics research and touch on some of the great challenges and opportunities. Legged robots are able to overcome the limitations of wheeled or tracked ground vehicles. ETH’s electrically powered legged quadruped robots are designed for high agility, efficiency and robustness in rough terrain. This is realized through an optimal exploitation of the natural dynamics and serial elastic actuation. For fast inspection of complex environments, flying robots are probably the most efficient and versatile devices. However, the limited payload and computing power of drones renders autonomous navigation quite challenging. Thanks to our custom designed visual-inertial sensor, real-time on-board localization, mapping and planning has become feasible and enables our multi-copters and solar-powered fixed wing drones for advanced rescue and inspection tasks or support in precision farming, even in GPS-denied environments.

Organizers: Katherine Kuchenbecker Matthias Tröndle Ildikó Papp-Wiedmann

  • Rainer Dahlhaus
  • Max Planck House Lecture Hall

(joint work with Jan. C. Neddermeyer) A technique for online estimation of spot volatility for high-frequency data is developed. The algorithm works directly on the transaction data and updates the volatility estimate immediately after the occurrence of a new transaction. Furthermore, a nonlinear market microstructure noise model is proposed that reproduces several stylized facts of high frequency data. A computationally efficient particle filter is used that allows for the approximation of the unknown efficient prices and, in combination with a recursive EM algorithm, for the estimation of the volatility curve. We neither assume that the transaction times are equidistant nor do we use interpolated prices. We also make a distinction between volatility per time unit and volatility per transaction and provide estimators for both. More precisely we use a model with random time change where spot volatility is decomposed into spot volatility per transaction times the trading intensity - thus highlighting the influence of trading intensity on volatility.

Organizers: Michel Besserve


Simulation in physical scene understanding

IS Colloquium
  • 28 March 2014 • 11:15 12:45
  • Peter Battaglia
  • Max Planck House Lecture Hall

Our ability to understand a scene is central to how we interact with our environment and with each other. Classic research on visual scene perception has focused on how people "know what is where by looking", but this talk will explore people's ability to infer the "hows" and "whys" of their world, and in particular, how they form a physical understanding of a scene. From a glance we can know so much: not only what objects are where, but whether they are movable, fragile, slimy, or hot; whether they were made by hand, by machine, or by nature; whether they are broken and how they could be repaired; and so on. I posit that these common-sense physical intuitions are made possible by the brain's sophisticated capacity for constructing and manipulating a rich mental representation of a scene via a mechanism of approximate probabilistic simulation -- in short, a physics engine in the head. I will present a series of recent and ongoing studies that develop and test this computational model in a variety of prediction, inference, and planning tasks. Our model captures various aspects of people's experimental judgments, including the accuracy of their performance as well as several illusions and errors. These results help explain core aspects of human mental models that are instrumental to how we understand and act in our everyday world. They also open new directions for developing robotic and AI systems that can perceive, reason, and act the way people do.

Organizers: Michel Besserve


Video-based Analysis of Humans and Their Behavior

Talk
  • 27 March 2014 • 14:00:00
  • Stan Sclaroff
  • MRC Seminar room (0.A.03)

This talk will give an overview of some of the research in the Image and Video Computing Group at Boston University related to image- and video-based analysis of humans and their behavior, including: tracking humans, localizing and classifying actions in space-time, exploiting contextual cues in action classification, estimating human pose from images, analyzing the communicative behavior of children in video, and sign language recognition and retrieval.

Collaborators in this work include (in alphabetical order): Vassilis Athitsos, Qinxun Bai, Margrit Betke, R. Gokberk Cinbis, Kun He, Nazli Ikizler-Cinbis, Hao Jiang, Liliana Lo Presti, Shugao Ma, Joan Nash, Carol Neidle, Agata Rozga, Tai-peng Tian, Ashwin Thangali, Zheng Wu, and Jianming Zhang.


Multi-View Perception of Dynamic Scenes

IS Colloquium
  • 20 March 2014 • 11:15:00 12:30
  • Edmond Boyer
  • Max Planck House Lecture Hall

The INRIA MORPHEO research team is working on the perception of moving shapes using multiple camera systems. Such systems allows to recover dense information on shapes and their motions using visual cues. This opens avenues for research investigations on how to model, understand and animate real dynamic shapes using several videos. In this talk I will more particularly focus on recent activities in the team on two fundamental components of the multi-view perception of dynamic scenes that are: (i) the recovery of time-consistent shape models or shape tracking and (ii) the segmentation of objects in multiple views and over time. 
 

Organizers: Gerard Pons-Moll


  • Prof. Yoshinari Kameda
  • MRC seminar room (0.A.03)

This talk presents our 3D video production method by which a user can watch a  real game from any free viewpoint. Players in the game are captured by 10 cameras and they are reproduced three dimensionally by billboard based representation in real time. Upon producing the 3D video, we have also worked on good user interface that can enable people move the camera intuitively. As the speaker is also working on wide variety of computer vision to augmented reality, selected recent works will be also introduced briefly.

Dr. Yoshinari Kameda started his research from human pose estimation as his Ph.D thesis, then he expands his interested topics from computer vision, human interface, and augmented reality.
He is now an associate professor at University of Tsukuba.
He is also a member of Center for Computational Science of U-Tsukuba where some outstanding super-computer s are in operation.
He served International Symposium on Mixed and Augmented Reality as a area chair for four years (2007-2010).


  • Christof Hoppe
  • MRC Seminar Room

3D reconstruction from 2D still-images (Structure-from-Motion) has reached maturity and together with new image acquisition devices like Micro Aerial Vehicles (MAV), new interesting application scenarios arise. However, acquiring an image set which is suited for a complete and accurate reconstruction is even for expert users a non-trivial task. To overcome this problem, we propose two different methods. In the first part of the talk, we will present a SfM method that performs sparse reconstruction of 10Mpx still-images and a surface extraction from sparse and noisy 3D point clouds in real-time. We therefore developed a novel efficient image localisation method and a robust surface extraction that works in a fully incremental manner directly on sparse 3D points without a densification step. The real-time feedback of the reconstruction quality the enables the user to control the acquisition process interactively. In the second part, we will present ongoing work of a novel view planning method that is designed to deliver a set of images that can be processed by today's multi-view reconstruction pipelines.


  • Bernt Schiele
  • Max Planck House Lecture Hall

This talk will highlight recent progress on two fronts. First, we will talk about a novel image-conditioned person model that allows for effective articulated pose estimation in realistic scenarios. Second, we describe our work towards activity recognition and the ability to describe video content with natural language. 

Both efforts are part of a longer-term agenda towards visual scene understanding. While visual scene understanding has long been advocated as the "holy grail" of computer vision, we believe it is time to address this challenge again,  based on the progress in recent years.


  • Pascal Fua
  • Max Planck House Lecture Hall

In this talk, I will show that, given probabilities of presence of people at various locations in individual time frames, finding the most likely set of trajectories amounts to solving a linear program that depends on very few parameters.
This can be done without requiring appearance information and in real-time, by using the K-Shortest Paths algorithm (KSP). However, this can result in unwarranted identity switches in complex scenes. In such cases, sparse image information can be used within the Linear Programming framework to keep track of people's identities, even when their paths come close to each other or intersect. By sparse, we mean that the appearance needs only be discriminative in a very limited number of frames, which makes our approach widely applicable.


  • Alessandra Tosi
  • Max Planck Haus Lecture Hall

Manifold learning techniques attempt to map a high-dimensional space onto a lower-dimensional one. From a mathematical point of view, a manifold is a topological Hausdorff space that is locally Euclidean. From Machine Learning point of view, we can interpret this embedded manifold as the underlying support of the data distribution. When dealing with high dimensional data sets, nonlinear dimensionality reduction methods can provide more faithful data representation than linear ones. However, the local geometrical distortion induced by the nonlinear mapping leads to a loss of information and affects interpretability, with a negative impact in the model visualization results.
This talk will discuss an approach which involves probabilistic nonlinear dimensionality reduction through Gaussian Process Latent Variables Models. The main focus is on the intrinsic geometry of the model itself as a tool to improve the exploration of the latent space and to recover information loss due to dimensionality reduction. We aim to analytically quantify and visualize the distortion due to dimensionality reduction in order to improve the performance of the model and to interpret data in a more faithful way.

In collaboration with: N.D. Lawrence (University of Sheffield), A. Vellido (UPC)


Perceptual Grouping using Superpixels

Talk
  • 11 November 2013 • 02:00:00
  • Sven Dickinson
  • MPH Lecture Hall

Perceptual grouping played a prominent role in support of early object recognition systems, which typically took an input image and a database of shape models and identified which of the models was visible in the image.  When the database was large, local features were not sufficiently distinctive to prune down the space of models to a manageable number that could be verified.  However, when causally related shape features were grouped, using intermediate-level shape priors, e.g., cotermination, symmetry, and compactness, they formed effective shape indices and allowed databases to grow in size.  In recent years, the recognition (categorization) community has focused on the object detection problem, in which the input image is searched for a specific target object.  Since indexing is not required to select the target model, perceptual grouping is not required to construct a discriminative shape index; the existence of a much stronger object-level shape prior precludes the need for a weaker intermediate-level shape prior.  As a result, perceptual grouping activity at our major conferences has diminished. However, there are clear signs that the recognition community is moving from appearance back to shape, and from detection back to unexpected object recognition. Shape-based perceptual grouping will play a critical role in facilitating this transition.  But while causally related features must be grouped, they also need to be abstracted before they can be matched to categorical models.   In this talk, I will describe our recent progress on the use of intermediate shape priors in segmenting, grouping, and abstracting shape features. Specifically, I will describe the use of symmetry and non-accidental attachment to detect and group symmetric parts, the use of closure to separate figure from background, and the use of a vocabulary of simple shape models to group and abstract image contours.