Institute Talks

  • Tim Sullivan

Beginning with a seminal paper of Diaconis (1988), the aim of so-called "probabilistic numerics" is to compute probabilistic solutions to deterministic problems arising in numerical analysis by casting them as statistical inference problems. For example, numerical integration of a deterministic function can be seen as the integration of an unknown/random function, with evaluations of the integrand at the integration nodes proving partial information about the integrand. Advantages offered by this viewpoint include: access to the Bayesian representation of prior and posterior uncertainties; better propagation of uncertainty through hierarchical systems than simple worst-case error bounds; and appropriate accounting for numerical truncation and round-off error in inverse problems, so that the replicability of deterministic simulations is not confused with their accuracy, thereby yielding an inappropriately concentrated Bayesian posterior. This talk will describe recent work on probabilistic numerical solvers for ordinary and partial differential equations, including their theoretical construction, convergence rates, and applications to forward and inverse problems. Joint work with Andrew Stuart (Warwick).

Organizers: Philipp Hennig


Dino Sejdinovic - TBA

IS Colloquium
  • Dino Sejdinovic