
Chapter 9
Model-Based Pose Estimation

Gerard Pons-Moll and Bodo Rosenhahn

Abstract Model-based pose estimation algorithms aim at recovering human mo-
tion from one or more camera views and a 3D model representation of the human
body. The model pose is usually parameterized with a kinematic chain and thereby
the pose is represented by a vector of joint angles. The majority of algorithms are
based on minimizing an error function that measures how well the 3D model fits
the image. This category of algorithms usually has two main stages, namely defin-
ing the model and fitting the model to image observations. In the first section, the
reader is introduced to the different kinematic parametrization of human motion. In
the second section, the most commonly used representations of the human shape
are described. The third section is dedicated to the description of different error
functions proposed in the literature and to common optimization techniques used
for human pose estimation. Specifically, local optimization and particle-based op-
timization and filtering are discussed and compared. The chapter concludes with a
discussion of the state-of-the-art in model-based pose estimation, current limitations
and future directions.

9.1 Kinematic Parametrization

In this chapter our main concern will be on estimating the human pose from images.
Human motion is mostly articulated, i.e., it can be accurately modeled by a set of
connected rigid segments. A segment is a set of points that move rigidly together. To
determine the pose, we must first find an appropriate parametrization of the human
motion. For the task of estimating human motion a good parametrization must have
the following attributes.

G. Pons-Moll (�) · B. Rosenhahn
Leibniz University, Hanover, Germany
e-mail: pons@tnt.uni-hannover.de

B. Rosenhahn
e-mail: rosenhahn@tnt.uni-hannover.de

T.B. Moeslund et al. (eds.), Visual Analysis of Humans,
DOI 10.1007/978-0-85729-997-0_9, © Springer-Verlag London Limited 2011

139

mailto:pons@tnt.uni-hannover.de
mailto:rosenhahn@tnt.uni-hannover.de
http://dx.doi.org/10.1007/978-0-85729-997-0_9

140 G. Pons-Moll and B. Rosenhahn

Attributes of a good parametrization for human motion:

• Pose configurations are represented with the minimum number of parame-
ters.

• Human motion constraints, such as articulated motion, are naturally de-
scribed.

• Singularities can be avoided during optimization.
• Easy computation of derivatives of segment positions and orientations

w.r.t. the parameters.
• Simple rules for concatenating motions.

A commonly used parametrization that meets most of the above requirements
is a kinematic chain, which encodes the motion of a body segment as the motion
of the previous segment in the chain and an angular motion about a body joint. For
example, the motion of the lower arm is parametrized as the motion of the upper arm
and a rotation about the elbow. The motion of a body segment relative to the previous
one is parametrized by a rotation. Parameterizing rotations can be tricky since it is
a non-Euclidean group, which means that if we travel any integer number of loops
around an axis in space we will end up in the same point. We now briefly review the
different parametrization of rotations that have been used for human tracking.

9.1.1 Rotation Matrices

A rotation matrix R3×3 is an element of SO(3). Elements of R ∈ SO(3) are the
group of 3 × 3 orthonormal matrices with det(R) = 1 that represent rotations [34].
A rotation matrix encodes the orientation of a frame B that we call body frame
relative to a second one S that we call spatial frame. Given a point p with body
coordinates, pb = (λx, λy, λz)

T , we might write the point p in spatial coordinates as

ps = λxxB
s + λyyB

s + λzzB
s , (9.1)

where xB
s , yB

s , zB
s are the principal axis of the body frame B written in spatial

coordinates. We may also write the relationship between the spatial and body frame
coordinates in matrix form as ps = Rsbpb . From this it follows that the rotation
matrix is given by

Rsb = [
xB
s yB

s zB
s

]
. (9.2)

Now consider a frame B whose origin is translated w.r.t. frame S by ts (the transla-
tion vector written in spatial coordinates). In this case, the coordinates of frames
S and B are related by a rotation and a translation, ps = Rsbpb + ts . Hence,
a pair (R ∈ SO(3), t ∈ R

3) determines the configuration of a frame B relative
to another S and is the product space of R

3 with SO(3) denoted as SE(3) =

9 Model-Based Pose Estimation 141

Fig. 9.1 Left: rigid body
motion seen as a coordinate
transformation. Right: rigid
body motion seen as a relative
motion in time

R
3 × SO(3). Elements of SE(3) are g = {R, t}. Equivalently, writing the point in

homogeneous coordinates p̄b = [pb

1
]

allows us to use the more compact notation

p̄s = Gsbp̄b, where Gsb =
[

Rsb[3×3] ts [3×1]
0[1×3] 1

]
. (9.3)

The rigid body motion is then completely represented by the matrix Gsb which is
the homogeneous representation of gsb . The reader unfamiliar with rotation matrices
might be surprised because the definitions given here for rotation and rigid motion
do not represent motion of points in a fixed frame but rather transformations be-
tween coordinate systems. This does not correspond to our informal understanding
of rotations. Consequently, do rotations and rigid body motion represent coordinate
transformations or motion? The answer is: both. To see this, consider a point p in
a rigid body, see Fig. 9.1, and imagine that the body and spatial frames coincide at
t = 0 see Fig. 9.1 right, consequently ps(0) = pb . At this time we apply the rigid
body motion to the point such that the point now moves to a new position ps(1). We
can write it as

p̄s(1) = Gsbp̄s(0), (9.4)

where the coordinates of ps(1) and ps(0) are both relative to the spatial frame.
This new interpretation of rigid motion will be very useful when we talk about hu-
man motion in the next section. Both interpretations of rigid motion are correct
and depending on the context one is preferable over the other, (e.g., to think about
world-to-camera mapping it is better to interpret it as a coordinate transformation
but when we think of human motion it is most of the times more intuitive to think
of rigid motion as the relative motion between temporal instants). Rotations can be
combined by simple matrix multiplication. However, representing rotations with ro-
tation matrices is suboptimal for optimization problems. This is because from the
nine numbers composing the matrix, six additional constraints must be imposed dur-
ing optimization in order to ensure that the matrix is orthonormal. Therefore, rep-
resenting angular motions with rotation matrices is problematic for motion tracking
because we need more parameters than strictly needed.

9.1.2 Euler Angles

One method for describing the orientation of a frame B relative to another frame S
is as follows: start with frame B coincident with frame S, rotate B α degrees about

142 G. Pons-Moll and B. Rosenhahn

the x-axis of frame S, then rotate β degrees about the y-axis of frame S and finally
rotate γ degrees about the z-axis (of frame S again). This corresponds to the x, y,
z Euler angles defined in frame S. There are several conventions on the order in
which these rotations are carried out; for example, it is also possible to perform the
rotation in the order z, y, z. Therefore, when we talk about Euler angles the order
of the rotations must be specified. It is very important to note with respect to which
frame the rotations are defined, they can be defined on the fixed reference frame S
or alternatively on the moving frame B. Therefore, a rotation matrix can always be
written as the composition of three rotations around the x, y, z axes (9.5). Note that
had we chosen the rotations to be defined in the moving frame B, the order would
be inverted.

R =
⎡

⎣
cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

⎤

⎦

⎡

⎣
cos(β) 0 − sin(β))

0 1 0
sin(β) 0 cos(β)

⎤

⎦

⎡

⎣
1 0 0
0 cos(α) − sin(α)

0 sin(α) cos(α)

⎤

⎦ .

(9.5)

In this manner, a rotation is completely defined by a triplet of Euler angles (α,β, γ).
The derivatives of a rotation with respect to the Euler angles are easy to compute.
Additionally, differential equation integration in parameter space is straightforward,
for example to update one of the three angles: αt = αt−1 + α̇. Unfortunately, Eu-
ler angles have a well known problem: when two of the rotation axis align one of
the rotations is lost. This well known singularity of Euler parametrization is called
gimbal lock.

9.1.3 Quaternions

Quaternions generalize complex numbers and can be used to represent 3D rotations
the same way as complex numbers can be used to represent planar rotations. For-
mally, a quaternion is a vector quantity of the form q = qw + qx · i + qy · j + qz · k
with i2 = j2 = k2 = i · j · k = −1. Unit length quaternions form a set called S3

which can be used to carry out rotations. They can also be interpreted as a scalar
qw plus a 3-vector (qw,v). One nice property about quaternions is that rotations
can be carried out in parameter space via quaternion product. Given two quater-
nions q1 = (qw,1,v1) and q2 = (qw,2,v2) the quaternion product denoted by (◦) is
defined as

q1 ◦ q2 = (qw,1qw,2 − v1 · v2, qw,1v2 + qw,2v1 + v1 × v2). (9.6)

If we want to rotate a vector a we can simply use the quaternion product. Thereby,
a rotation by an angle θ about an axis ω is represented by the quaternion:

q = [qw,qx, qy, qz]T =
(

cos

(
θ

2

)
,ω sin

(
θ

2

))
(9.7)

9 Model-Based Pose Estimation 143

and the vector a is rotated with

a′ = Rotate(a) = q ◦ ã ◦ q̄, (9.8)

where ◦ denotes quaternion product, ã = [0,a] is a zero scalar component appended
with the original vector a and q̄ = (qw,−v) is the complex conjugate of q. Addition-
ally, there exist simple formulas for computing the rotation matrix from a quaternion
and vice versa. Furthermore, the four partial derivatives ∂R

∂qw
, ∂R
∂qx

, ∂R
∂qy

, ∂R
∂qz

exist and

are linearly independent in S3 which means there are no singularities. Probably this
last property is the most interesting but this comes at the expense of using 4 numbers
instead of just 3. This means that during optimization we must impose a quadratic
constraint so that the quaternion keeps unit length. Integrating ODEs can also be
problematic since the quaternion velocity q̇ generally lies in the tangent space of S3

and any movement in the tangent plane will push the quaternion off S3. Nonetheless,
there exist solutions to these limitations [25, 41]. Since unit quaternions directly
represent the space of rotations and are free of singularities they provide an efficient
representation of rotations. Particularly, quaternions have proven to be very useful
for the interpolation of key-frame poses because they respect SO(3) geometry.

9.1.4 Axis–Angle

To model human joint motion it is often needed to specify the axis of rotation of
the joint. For example we might want to specify the motion of the knee joint as a
rotation about an axis perpendicular to the leg and parallel to the hips. Therefore,
for our purpose the axis–angle representation is optimal because rotations are de-
scribed as an angle θ and an axis in space ω ∈ R

3 where θ determines the amount of
rotation about ω. Unlike quaternions the axis–angle, requires only three parameters
θω to describe a rotation. It does not suffer from gimbal lock and their singulari-
ties occur in a region of parameter space that can be easily avoided. Since it will
be our parametrization of choice to model human joint motion we will give a brief
introduction to the formulation of twists and exponential maps. For a more detailed
description we refer the reader to [34].

9.1.4.1 The Exponential Formula

Every rotation R can be written in exponential form in terms of the axis of rotation
ω ∈R

3 and the angle of rotation θ as

R = exp(θω̂), (9.9)

where ω̂ ∈ so(3) is the skew symmetric matrix constructed from ω. The elements of
so(3) are skew symmetric matrices i.e., matrices that verify {A ∈ R

3×3|A = −AT }.

144 G. Pons-Moll and B. Rosenhahn

Given the vector θ(ω1,ω2,ω3) the skew symmetric matrix is constructed with the
wedge operator ∧ as follows:

θω̂ = θ

⎡

⎣
0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎤

⎦ . (9.10)

By definition, the multiplication of the matrix ω̂ with a point p is equivalent to the
cross product of the vector ω with the point.

To derive the exponential formula in (9.9) consider a 3D point p rotating about
an axis ω intersecting the origin at a unit constant angular velocity. Recall from
elementary physics that the tangential velocity of the point may be written as

ṗ(t) = ω × p(t) = ω̂p(t) (9.11)

which is a differential equation that we can integrate to obtain

p(t) = exp(ω̂t)p(0). (9.12)

It follows that if we rotate θ units of time the net rotation is given by

R(θ,ω) = exp(θω̂). (9.13)

The exponential map of a matrix A ∈R
n×m is analogous to the exponential used for

real numbers a ∈ R. In particular the Taylor expansion of the exponential has the
same form:

exp (θω̂) = e(θω̂) = I + θω̂ + θ2

2! ω̂
2 + θ3

3! ω̂
3 + · · · . (9.14)

Exploiting the fact that (θω̂) is screw symmetric, we can easily compute the expo-
nential of the matrix ω̂ in closed form using the Rodriguez formula:

exp(θω̂) = I + ω̂ sin(θ) + ω̂2(1 − cos(θ)
)
, (9.15)

where only the square of the matrix ω̂ and sine and cosine of real numbers have
to be computed. Note that this formula allows us to reconstruct the rotation matrix
from the angle θ and the axis of rotation ω by simple operations and this is probably
the main justification of using the axis–angle representation at all.

9.1.4.2 Exponential Maps for Rigid Body Motions

The exponential map formulation can be extended to represent rigid body motions,
namely any motion composed by a rotation R and a translation t. This is done by
extending the parameters θω with θv ∈ R

3 which is related to the translation along
the axis of rotation and the location of the axis. These six parameters form the twist

9 Model-Based Pose Estimation 145

coordinates θξ = θ(v1, v2, v3,ω1,ω2,ω3) of a twist. Analogous to (9.9), any rigid
motion G ∈ R

4×4 can be written in exponential form as

G(θ,ω) =
[

R3×3 t3×1
01×3 1

]
= exp(θ ξ̂), (9.16)

where the 4 × 4 matrix θ ξ̂ ∈ se(3) is the twist action and is a generalization of the
screw symmetric matrix θω̂ of (9.10). The twist action is constructed from the twist
coordinates θξ ∈ R

6 using the wedge operator ∧

[θξ]∧ = θ ξ̂ = θ

⎡

⎢
⎢
⎣

0 −ω3 ω2 v1
ω3 0 −ω1 v2

−ω2 ω1 0 v3
0 0 0 0

⎤

⎥
⎥
⎦ (9.17)

and its exponential can be computed using the formula

exp(θ ξ̂) =
[

exp(θω̂) (I − exp(θω̂))(ω × v + ωωT vθ)

01×3 1

]
(9.18)

with exp(θω̂) computed by using the Rodriguez formula (9.15) as explained before.

9.1.4.3 The Logarithm

For human tracking it is sometimes needed to obtain the twist parameters given a
transformation matrix G. In particular if we want to obtain the resulting twist of two
consecutive twists this operation is needed. In [34], a constructive way is given to
compute the twist which generates a given transformation matrix G. For the case
R = I, the twist is given by

θξ = θ

(
0,0,0,

t
‖t‖

)
, θ = ‖t‖ . (9.19)

For the other cases, the motion velocity θ and the rotation axis ω are given by

θ = cos−1
[

tr(R) − 1

2

]
, ω = 1

2 sin(θ)

⎡

⎣
R32 − R23
R13 − R31
R21 − R12

⎤

⎦ . (9.20)

From (9.18) it follows that to obtain v, the matrix

A = (
I − exp(θω̂)

)
ω̂ + ωωT θ (9.21)

needs to be inverted and multiplied with the translation vector t,

v = A−1t. (9.22)

We call this transformation from a rigid motion G ∈ SE(3) to a twist θξ ∈ R
6 the

logarithm, θξ = log(G).

146 G. Pons-Moll and B. Rosenhahn

Fig. 9.2 Screw motion, left:
the cross product of the
scaled axis θω and the vector
(ps − q) results in the
tangential velocity of the
point ṗs = θω × (ps − q).
Equivalently, the tangential
velocity may be written using
the twist ṗs = ξ̂ps . Right:
generalized screw motion
with rotation and translation
along the axis

9.1.4.4 Adjoint Transformation

Given a twist ξb = (vb,ωb) ∈R
6 with coordinates in the body frame B, we can find

the coordinates of the twist in the spatial frame S. Given that the configuration of B
relative to frame S is the rigid motion g = (R, t) ∈ SE(3), the twist coordinates in
the spatial frame are given by

ξs = Adg ξb, Adg =
[

R t∧R
03×3 R

]
, (9.23)

where Adg is the adjoint transformation associated with g, see [34]. To see this, note
that the angular components are related by the rotation ωs = Rωb (the same way we
rotate points we can rotate the axes). From this it follows that vs = Rvb + t∧Rωb.
Equivalently, the action ξ̂s of a twist with twist coordinates ξs is related to the action
ξ̂b with twist coordinates ξb by

ξ̂s = G ξ̂b G−1. (9.24)

Recall that the product of a twist ξ̂ by a point results in the velocity of the point
vp, see Fig. 9.2. Furthermore, a twist with twist coordinates ξa in a given frame A,
applies on points pa defined in the same frame A and this results in the velocity of
the point relative to frame A vpa . Thus, we can interpret (9.24) the following way:
the velocity in spatial coordinates of a point ps is obtained by first transforming
the point to body coordinates ps �→ pb with G−1, then finding the velocity of the
point in body coordinates vpb

using the twist action ξ̂b and finally transforming
the velocity back to spatial coordinates vps with G. One can prove that indeed this
results in the spatial velocity

v̄ps = (
G ξ̂b G−1) p̄s = (

G ξ̂b G−1)G p̄b = G ξ̂b p̄b = G v̄pb
, (9.25)

where v̄ps = [vps 0] are the homogeneous coordinates of the vector vps . An interest-
ing property that stems from (9.24) and (9.25) is that G can be shifted inside the
exponential

exp
(
ξ̂s

) = G exp
(
ξ̂b

)
G−1 = exp

(
G ξ̂b G−1) (9.26)

9 Model-Based Pose Estimation 147

Fig. 9.3 Kinematic chain:
the motion is given by the
concatenation of joint angular
motions. Note how the twists
ξ are transformed to ξ ′ when
parent articulations move

which means that to express a rigid body motion exp(ξ) in another coordinate sys-
tem we can simply transform the corresponding twist action with G. The same way
we can interpret a rigid motion applied to a point as a coordinate transformation
or as a relative motion, we can interpret the adjoint transform applied to twists as
a transformation that brings a twist from their initial coordinates ξ to their coordi-
nates ξ ′ (defined in the same frame) after the rigid motion g is applied, see Fig. 9.3.
Indeed, we will make frequent use of this interpretation in the next sections when
we have to keep track of human joints locations and orientations during tracking.

9.1.5 Kinematic Chains

Human motion is articulated and we want to model the motion taking all the joints
into account at the same time. For example, consider the motion of the hand, this
motion will be the concatenation of motions of their parent joints, wrist, elbow,
shoulder and root. To formulate this we now define two coordinate frames, the
spatial frame S, which is usually fixed and the body frame B, which is the coor-
dinate system attached to the segment of interest. Note that the body frame moves
along with the segment and therefore a control point in the segment in body coor-
dinates pb is always constant. Consider the arm in Fig. 9.3 with two segments and
only two degrees of freedom. To obtain the coordinates of a control point in the
hand in spatial coordinates ps from their body coordinates pb we can concatenate
the rigid motions along the chain:

p̄s = Gsbp̄b = G1G2Gsb(0)p̄b, (9.27)

where G1, G2 are the rigid motion matrices of the upper and lower arm, respectively,
and Gsb(0) is the transformation between B and S at the zero pose. By using the fact
that the motion of each individual joint is generated by a twist associated with a joint
axis (see Fig. 9.3) we can write the spatial coordinates of a point in the body as a
function of the joint angles in the chain:

p̄s = Gsb(θ1, θ2) = eξ̂1θ1eξ̂2θ2Gsb(0)p̄b. (9.28)

Any new articulation joint will represent an additional twist in the chain, Fig. 9.3.
If we generalize this procedure for any limb of the human body we can define
what is known in the robotics literature as the forward kinematics map. The for-
ward kinematics is then defined as the mapping between the vector of joint angles

148 G. Pons-Moll and B. Rosenhahn

Θ = (θ1, θ2, . . . , θn)
T to the transformation matrix between the spatial and body

frames Gsb. If we define Q as the space of joint angle vectors, then the forward
kinematics Gsb : Q → SE(3) is given by

Gsb(Θ) = eξ̂1θ1eξ̂2θ2 · · · eξ̂nθnGsb(0), (9.29)

where ξ are constant twists in the reference configuration, i.e., the starting zero pose.
For human tracking it is usual to take Gsb(0) to be the identity, i.e., the body and
spatial frame are coincident at the beginning for every single limb on the human
body.

9.1.5.1 The Articulated Jacobian

The articulated Jacobian1 is a matrix JΘ ∈ R
6×n that maps joint velocities to a rigid

body motion velocity represented by a twist and it may be written as

JΘ = [
ξ1 ξ ′

2 · · · ξ ′
n

]
, (9.30)

where ξ ′
i = Ad

(eξ̂1θ1 ...eξ̂i−1θi−1)
ξi is the ith joint twist transformed to the current pose,

Fig. 9.3. To obtain ξ ′
i an option is to update at every time step the twists with the

accumulated motion of parent joints in the chain. Note that the form of the Jacobian
is different for every limb in the body since different body parts are influenced by
different joints. Now given a pose determined by Θ and point in the body in spatial
coordinates ps we can obtain the increment Δps in position as a function of the
increment in parameter space ΔΘ as

Δp̄s = [JΘ · ΔΘ]∧p̄s = [
ξ1Δθ1 + ξ ′

2Δθ2 + · · · + ξ ′
nΔθn

]∧p̄s , (9.31)

where ∧ is the wedge operator defined in (9.17) and we drop the homogeneous com-
ponent after the multiplication of [JΘ ·ΔΘ]∧p̄s . We can interpret the formula as fol-
lows: the total displacement of the point ps is the sum of individual displacements
generated by the angle increments Δθi in upper joints keeping the others fixed. It is
very important to note that the result of [JΘ ·ΔΘ] are the twist coordinates ξs of the
rotational ω and “linear velocity” v of the body expressed in the spatial frame. Note
that the product ξ̂s p̄s results in the point increment in homogeneous coordinates
Δp̄s = [Δps 0]. Since we are not interested in the last homogeneous component, in
the following we will confuse Δp̄s with Δps by dropping the homogeneous com-
ponent after the multiplication ξ̂sps .

1We call it articulated Jacobian and not manipulator Jacobian as in Murray et al. [34] because we
find it more appropriate in this context.

9 Model-Based Pose Estimation 149

Table 9.1 Table of existing joints to model human motion

Joint DoF Unknown parameter Example

Root 6 ξ = θ [v ω]T All body

Ball 3 θω Hips

Saddle 2 θ1, θ2 Wrist

Revolute 1 θ Knee

9.1.6 Human Pose Parametrization

Now we have the necessary mathematical tools to model all the joints in the human
model. We identify three kinds of joints in the human body according the DoF, see
Table 9.1. The root joint that determines the overall orientation and position of the
body has 6 DoF and can be modeled as a twist θξ with the six components as free
parameters. Ball joints capable of any rotation with no translation can be efficiently
modeled as twist with known joint location q and unknown axis of rotation θω [38].
Finally, simple revolute joints are only capable of rotations about a fixed known
axis. For revolute joints the twist is constant and is given by

ξ =
[−ω × q

ω

]
(9.32)

and the only unknown is the rotation angle θ , see Fig. 9.2 for a geometrical interpre-
tation. This last category is very convenient to constrain the motion of 1 DoF joints
(e.g., the knee).

In the literature the common choice is to model the root joint with six free pa-
rameters and to model all the other joints with the concatenation of revolute joints.
Thereby, a ball joint is modeled by three consecutive revolute joints, i.e., three con-
secutive rotations about three fixed axes. The free parameters are then the angles
about each of the three axes θ1, θ2, θ3. This parametrization is very similar to the
Euler angles and has the same limitations in terms of singularities, i.e., it is not free
of gimbal lock. However, to keep the notation simple, in the following we assume
that we parametrize ball joints as three consecutive revolute joints. For a description
of the parametrization of ball joints using a single free axis of rotation we refer the
reader to [38].

Therefore, the pose configuration of the human is usually encoded with a scaled
twist ξ for the root joint and a vector of n joint angles for the rest of the joints. Let
us denote the state vector of pose parameters at time t , as

xt := (ξ,Θ), Θ := (θ1θ2 . . . θn). (9.33)

150 G. Pons-Moll and B. Rosenhahn

Thereby, a human pose is totally determined by a D-dimensional state vector
xt ∈ R

D , with D = 6 + n.

9.1.6.1 The Pose Jacobian

For local optimization it is necessary to know the relationship between increments
in the pose parameters and increments in the position of a point in a body segment.
This relationship is given by the pose Jacobian Jx(ps) = Δps

Δx . In this paragraph,
we derive the analytical expression for the pose Jacobian. We start our derivation
from the expression of the point increment of (9.31). Let us denote with Δξ =
[Δv1 Δv2 Δv3 Δω1 Δω2 Δω3] the relative twist corresponding to the root joint.
The six coordinates of the scaled relative twist Δξ are now free parameters we will
want to estimate. By using the identity [u + w]∧ = û + ŵ we can rewrite (9.31) as
increments in pose parameter space

Δps = [
Δξ + ξ ′

1Δθ1 + · · · + ξ ′
nΔθn

]∧p̄s

= Δ̂ξ p̄s + ξ̂ ′
1p̄sΔθ1 + · · · + ξ̂ ′

np̄sΔθn, (9.34)

where we can isolate the parameters of the root joint Δξ rewriting Δ̂ξ p̄s

Δ̂ξ p̄s = Δv + Δω × ps = Δv − p∧
s Δω = [

I[3×3] |−p∧
s

]
Δξ (9.35)

and substituting this expression in (9.34) again

Δps = [
I[3×3] |−p∧

s

]
Δξ + ξ̂ ′

2p̄sΔθ2 + · · · + ξ̂ ′
np̄sΔθn

= Jx(ps)Δx, (9.36)

where Δx = [Δξ ΔΘ] is the differential vector of pose parameters and

Jx(ps) = [
I[3×3] −p∧

s ξ̂1p̄s ξ̂ ′
2p̄s · · · ξ̂ ′

np̄s

]
(9.37)

is the positional Jacobian Jx(ps) ∈ R
3×D of a point ps with respect to the pose

parameters which we denote as pose Jacobian. For a given point in the body ps in
a configuration x, Jx(ps) : RD �→ R

3 maps an increment of the pose parameters Δx
to a positional increment of the point Δps . We identify two main blocks in the pose
Jacobian: the first six columns that correspond to the non constant relative twist Δξ

of the root joint, and the rest of the columns (joint columns) that correspond to the
point velocity contribution of each joint angle. Consequently, the column entries of
joints that are not parents of the point are simply zero 03×1. The analytical pose
Jacobian derived here is general and will appear in every local optimization method
using the parametrization described in (9.33).

9 Model-Based Pose Estimation 151

9.2 Model Creation

A very important step in the pose estimation pipeline is the 3D model creation.
This involves the initialization of the 3D surface mesh and the skeletal kinematic
structure. We can roughly classify the approaches for shape initialization according
to the level of detail. We find three main classes, methods that approximate the
human body using geometric primitives, methods that use a subject specific body
scan to build a 3D mesh model and finally methods that estimate detailed shape
from images without a body scan of the subject.

9.2.1 Geometric Primitives

A wide variety of geometric primitives have been used to approximate the body
shape. Early works used a simplified body model-based on a collection of articu-
lated planar rectangles [28]. More sophisticated models have used cylinders [42],
truncated cones, ellipsoids [45] or Gaussian blobs [36]. These geometric primitives
can then be parametrized using very few numbers e.g., the shape of the cylinders is
encoded as the height and radius. Thereby, if not initialized manually, the vector of
shape parameters φ is estimated from images in a calibration step. The parameters
include internal proportions, limb lengths and volumes.

9.2.2 Detailed Body Scans

Whole-body 3D scans provide a very accurate measurement of the surface shape.
However, the model creation from a 3D scan is more involved than using simple
geometric primitives. The output from a 3D scans is usually a dense 3D point cloud
and a triangulated mesh. However, the triangulated mesh contains holes due to self
occlusions. To initialize the model for tracking three main pre-processing steps are
needed, (i) fit a template mesh to the 3D point cloud of the scanner, (ii) create a
skeleton and (iii) bind skin to the skeleton bones. The last is known as skinning and
the whole process is known as rigging.

• Template mesh registration: Since the triangulated mesh from the laser scan con-
tains holes, a template mesh has to be morphed to fit the point cloud. This can
be done with standard non-rigid registration techniques [1, 49]. Current non-rigid
registration techniques require a set corresponding control points between the
template mesh and the scan. The correspondences can be obtained, for example,
with Correlated Correspondence technique which matches similar looking sur-
face regions while minimizing the deformation [4]. Given the correspondences
non-rigid registration is used to fit the template to the scan.

• Skeleton fitting: The skeleton determines the motion of the model. For the cre-
ation of the skeleton we must choose the number of joint articulations and the

152 G. Pons-Moll and B. Rosenhahn

Fig. 9.4 Processing pipeline for model rigging from a body scan; from left to right: body scan
surface, down-sampled 3D point cloud, skeleton with the twist axis orientations in black, registered
template mesh, skinned model and animated model

degrees of freedom for every joint. Rough human models use only 15 degrees
of freedom while models used for movie production contain over 60. For human
pose estimation from images many researchers use 20–30 DoF, which gives a
good compromise between degree of realism and robustness. For every joint we
must determine two things: the location and the orientation of the axis of rotation
ω, see Fig. 9.4. The skeleton is usually edited manually before tracking.

• Skinning: Given the registered template mesh and the skeleton we have to deter-
mine for every vertex in the surface to which body part it belongs, i.e. we must
assign a joint index to every vertex. For realistic animations, however, the repre-
sentation of human motion as rigid parts is too simplistic, specially for regions
close to the articulations. To obtain a smooth deformation an option is to use lin-
ear blend skinning [32], which approximates the motion of points close to a joint
by a weighted linear combination of neighboring joints. For example the motion
of the shoulder vertices would be given by a combination of the torso and arm
motions. The motion of a point ps(0) in the reference pose is then given by

p̄s =
∑

i∈N

wiGi
sb(xt)p̄s(0), (9.38)

where i ∈ N are the indices of their neighboring joints, and wi are the weights.
A simple rule to set the weights is to make them inversely proportional to the
distance to neighboring joint locations wi = 1/di . However, this produces se-
vere artifacts. Several algorithms from the graphics community attempt to solve
the skinning problem. As a matter of fact, open source software is available to
compute the weights given a mesh and a skeleton [6]. Nevertheless, to keep no-
tation simple, throughout this chapter we assume each point is assigned a single
joint with weight equal one. We want to emphasize, however, that linear blend
skinning does not change the formulation on kinematic chains described in the
previous section since it is based on linear combinations of rigid motions.

The whole pipeline for mesh registration and rigging is shown in Fig. 9.4.

9 Model-Based Pose Estimation 153

9.2.3 Detailed Shape from Images

Body scan models are limited by the availability of range scanners. To overcome
this limitation a recent research direction has focused on the estimation of detailed
shape from images [5, 26]. This is achieved by finding parametrization learned from
a database of human scans that encodes human shape and pose variation across
individuals [2, 3]. All subjects in the database are scanned in different poses to
account for both shape and pose deformation. The pose is usually encoded by a
combination of rigid and non-rigid deformations, and the shape variation is modeled
with a set of PCA coefficients learned from the database.

As a final comment, there exist approaches that use neither a skeleton nor shape
knowledge from a database [12, 18]. In contrast, such approaches directly deform
the mesh geometry by non-rigid deformation to fit a set of multiview silhouettes.
While impressive results are achieved with such methods, high quality silhouettes
are needed and at least eight cameras are used.

9.3 Optimization

Now that we have the mathematical tools to generate the 3D models and to repre-
sent human motion, our aim is to recover this motion form one or multiview images.
Model-based algorithms are classified as generative model approaches because in-
dependently of the optimization scheme used, they all model the likelihood of the
observations for a given configuration of pose parameters. The pose that best ex-
plains the observations is typically found by minimizing an error function that mea-
sures how well the model fits the image data. Even using multiple cameras and
relatively simple background settings this poses a hard optimization problem. Dif-
ficulties arise from model-image matching ambiguities, depth ambiguities and the
high dimensionality of the state space. An additional difficulty is that the space of
plausible poses only represents a small region of the full parameter space R

D . The
ability to obtain better results by constraining search to a sub-space of plausible
poses will be discussed at length in Chap. 10. The key components for successful
tracking, which we will describe here, are the design of the cost function and the op-
timization strategy. In this section we describe the different optimization strategies
for human pose estimation and the type of error functions used.

9.3.1 Local Optimization

Given an initial estimate, local optimization methods are based on iteratively lin-
earizing the error function to find a descent direction. Usually, these methods con-
verge to a local optimum and consequently their performance strongly depends on
the initialization. During tracking, the knowledge of the estimates in previous frames

154 G. Pons-Moll and B. Rosenhahn

can simplify the task: in the simplest case the initial estimate is given by the pose
obtained in the previous frame, or alternatively motion models can be used to make
good predictions closer to the true pose. We distinguish three main families of lo-
cal optimization methods for human pose estimation: methods based on correspon-
dences, optical flow and regions.

9.3.1.1 Correspondence-Based

Almost all early approaches for 3D human pose estimation were correspondence-
based and still it remains one of the most popular strategies. A reason for that is that
these approaches are computationally efficient while providing very accurate results
in many situations. The key idea is to collect a set of correspondences between 3D
points pi of the model and the image observations ri . Then, the distance between
the projection of the 3D model points r̃i (predictions) and the image observations is
minimized with respect to the pose parameters xt , see Fig. 9.5.

Hence, correspondence-based algorithms consist of three main stages

1. Feature extraction: extract image observations (e.g., silhouettes, edges,
SIFT features)

2. Model image association: match the model 3D points with the image ob-
servations and collect this correspondences

3. Descent strategy: find the pose parameters that bring the model points into
correspondence with the image observations

Feature extraction: Different features like image silhouettes, image edges, and
SIFT have been used and combined for human pose estimation. Edge and silhou-
ettes where used in very early works and continue to be dominant for human pose
estimation because they are relatively easy to extract and are stable to illumina-
tion changes. Therefore, we will explain in detail a motion capture system based
on silhouettes and then the integration of additional features like SIFT will become
obvious. In the context of human tracking a silhouette is a binary image with white
pixels indicating the foreground i.e., the region of the subject we want to track. In in-
door environments, silhouettes can be obtained with great accuracy via background
subtraction techniques [35]. In outdoor environments, it is considerably more chal-
lenging but also possible if background images are available. Once the silhouettes
are obtained, the image contour is obtained with an edge detector.

Model image association: For the correspondences, since we want to predict
the image contour, only points belonging to the occluding contour are considered.
A point belongs to the occluding contour pi ∈ O if its surface normal n̂ is perpen-
dicular to the line L connecting the camera center O and the point. In other words,

9 Model-Based Pose Estimation 155

Fig. 9.5 From left to right: original image, silhouette from background subtraction, rendering of
the projected mesh at the current pose, correspondences by contour matching, animated model
seen from a virtual view

the occluding contour is the set of points in the mesh that project to the silhouette
contour of the projected mesh.

To find the points of the occluding contour there are two main strategies, the first
and the simplest one is to test for every point in the mesh if the surface normal is
perpendicular to the projection ray:

p ∈ O if n̂ · (p − C) < ε, (9.39)

where ε is a small positive threshold. In practice, however, this approach is prob-
lematic since the accuracy of n̂ strongly depends on the mesh resolution (number of
vertices of the mesh). One solution is to look for sign changes of the angle between
the triangle normal and the projection ray. The second strategy is to first render a bi-
nary silhouette projection on the image, project all the vertices of the mesh and retain
only those on the silhouette boundary. To render the silhouette image, all the visible
surface triangles are projected to the image and filled using typical graphics raster-
scan algorithms. Alternatively, the rendering can be very efficiently performed on
the GPU using OpenGL. At this point we have two sets of points, the 3D points in
the occluding contour pi ∈ O and the 2D points from the image contour ri ∈ I . The
correspondences can be found by finding for every point projection r̃i = Prc(pi) the
k-nearest neighbors in the image contour. This will result in a set of 3D–2D corre-
spondences (pi , ri) or 2D–2D correspondences (r̃i , ri). We note that finding correct
correspondences is a hard problem with probably many local minima. To leverage
this, additional terms based on overlap between the model and image silhouette can
be included into the matching cost [44].

Descent strategies: Collecting many of these correspondences (r̃i , ri) the error
function e : RD �→ R may be defined as the sum of squared re-projection errors in
the image

e(xt) =
N∑

i

e2
i (xt) =

N∑

i

∥∥r̃i (xt) − ri

∥∥2 (9.40)

156 G. Pons-Moll and B. Rosenhahn

which we want to minimize with respect to the pose parameters xt . Note that
in the case of 2D–2D correspondences the individual residual errors ei ∈ R

2 are
2D error vectors ei = (Δri,x,Δri,y). Equation (9.40) is a classical non-linear least
squares that can be re-written in vector form as

e(xt) = eT e, (9.41)

where e ∈ R
2N is the total residual error e = (eT

1 , eT
2 , . . . , eT

N). Equation (9.41) can
be efficiently minimized using a Gauss–Newton style minimization. The trick is
to iteratively linearize the vector function e ∈ R

2N around the solution with the
Jacobian matrix Jt to find a descent step. In the literature, the expression for the
Jacobian matrix is often omitted due to space limitations. Therefore, we reproduce
here how to derive the analytical expression of the Jacobian matrix Jt ∈ R

2N×D of
the residual error e. We start by deriving the expression for the Jacobian of the error
of a single correspondence Jt,i = Δei

Δx . It is straightforward to see that the individual

error Jacobian equals the prediction Jacobian Jt,i = Δei

Δx = Δr̃i

Δx because only the
prediction r̃i depends on the pose parameters. Recall that the matrix Jt,i ∈ R

2×D

maps increments in the pose parameters Δx to increments in the predictions Δr̃i .
To compute the Jacobian it is useful to identify the set of transformations applied
to a point ps(0) in the reference pose to the final projection in the image r̃. We can
visualize this with the diagram

ps(0)
Gsb(xt)−−−−−−−−−−→ ps

gc:=Mext−−−−−−−−−−→ pc

gp :=f (X
Z

+ox, X
Z

+oy)

−−−−−−−−−−−−−−−→ r̃,

where Gsb(xt) is the concatenation of rigid motions in the kinematic chain given
by the pose parameters xt , gc(p) �→ Mextp is the extrinsic camera matrix that
transforms a point from spatial coordinates ps to camera coordinates pc and
gp(X,Y,Z) �→ (f X

Z
+ ox, f

X
Z

+ oy) is the perspective projection of 3D point in
camera coordinates onto the image plane (with f denoting the focal length, (ox, oy)

the principal point and we assume the skew coefficient is one). Now we can compute
the Jacobians Jc ∈ R

3×3, Jp ∈R
2×3 of the functions gc, gp separately as

gc :R3 → R
3, pi

c = Mextp̄i
s = Rcspi

s + tcs =
⎡

⎣
X

Y

Z

⎤

⎦ , Jc = Rcs,

gp : R3 →R
2, r̃i = gp

(
pi

c

) =
(

f
X

Z
+ ox, f

Y

Z
+ oy

)
, Jp = f

[1
Z

0 − X

Z2

0 1
Z

− Y

Z2

]

,

where the Jacobian of gc is directly the rotational component of the extrinsics, Rcs

because it is a linear map and the Jacobian of gp is computed by direct application
of the definition of the Jacobian matrix. By applying the chain rule, the Jacobian of
the composed mapping Jt,i might be written as

Jt,i = Δr̃i

Δxt

= Δr̃i

Δpc

· Δpc

Δps

· Δps

Δxt

= JpRcsJx
(
pi

s

)
, (9.42)

9 Model-Based Pose Estimation 157

where Jx(pi
s) is the pose Jacobian derived earlier in (9.37). It is straightforward to

see that the Jacobian of total residual error Jt ∈ R
2N×D may be written by stacking

the individual point Jacobians Jt,i ∈ R
2×D

Jt = Δe
ΔXt

=

⎡

⎢⎢⎢
⎣

Jt,1
Jt,2
...

Jt,N

⎤

⎥⎥⎥
⎦

. (9.43)

With the analytical expression of the residual Jacobian the Gauss–Newton method
calculates the descent step as follows:

Δx = arg min
Δx

1

2
eT (xt + Δx)e(xt + Δx)

= arg min
Δx

1

2
(e + JtΔx)T (e + JtΔx)

= arg min
Δx

1

2
eT e + ΔxT JT

t e + 1

2
ΔxT JT

t JtΔx, (9.44)

where e = e(xt)
T and Jt = Jt (xt) are evaluated at the current estimation xt . Finally,

derivating with respect to Δx and equating to zero we find that the descent step is

Δx = −(
JT
t Jt

)−1JT
t e. (9.45)

At every iteration of the Gauss–Newton algorithm the step is computed using (9.45)
and the pose parameters are updated xt+1 = xt +Δx. This procedure is repeated un-
til the algorithm converges. The step Δx always decreases the error function e(xt) as
long as the Jacobian matrix Jt has full rank. In the Levenberg–Marquadt algorithm,
the Gauss–Newton step is modified

Δx = −(
JT
t Jt + μI

)−1JT
t e (9.46)

by introducing an additional dynamically chosen parameter μI that improves the
performance. If the step decreases the error, the step is accepted and the value
of μ is reduced. If the step increases the error, μ is increased and a new step is
computed. When μ is large the method performs like standard gradient descent,
slow but guaranteed to converge. When μ is small it performs like Gauss–Newton.
Once the algorithm has converged the obtained pose estimate is used as initializa-
tion for the next frame, new correspondences are found in the new image and the
process is repeated. For large motions one often needs to re-project the model to
the image several times to obtain refined correspondences, similar to the standard
Iterative Closest Point (ICP) registration method [7, 52].

Different error functions: Different error functions have been proposed in the
literature. For example, Rosenhahn et al. [39] directly minimize the sum of squared

158 G. Pons-Moll and B. Rosenhahn

Fig. 9.6 Different error functions, from left to right: minimization of re-projection error (2D–2D
correspondences), point to line distance error minimization (2D–3D correspondences), point to
point distance error minimization (3D–3D correspondences) and region-based tracker

distances between 3D model points pi
s and the projection rays Li casted by the

corresponding 2D image observations ri . Writing the projection line in Plücker co-
ordinates Li = (mi ,ni) the error may be written as

e(xt) =
N∑

i

e2
i (xt) =

N∑

i

∥
∥pi

s (xt) × ni − mi

∥
∥2

, (9.47)

where the residuals are 3D distance error vectors ei ∈ R
3. In this case it is straight-

forward to show that the Jacobian of the error of one correspondence pair is given
by Jt,i = n∧

i Jx(pi
s) ∈R

3×D .
Another alternative used by several authors [14, 16] is to first reconstruct the

visual hull [30] from the multiview images obtaining a rough volume of the human
shape. Then the matching is done between the model points and the points from the
visual hull resulting in a set of 3D–3D correspondences (pi

s ,qi
s). The error function

is then simply the distance between 3D points

e(xt) =
N∑

i

e2
i (xt) =

N∑

i

∥∥pi
s (xt) − qi

s

∥∥2 (9.48)

with ei ∈ R
3 where in this case the Jacobian is directly Jt,i = Jx(pi

s).
In Fig. 9.6 an illustration of common error functions is shown.

Combining features: Other kind of features like SIFT or optical flow can be
integrated as additional correspondences into this framework as long as they can be
predicted given a pose estimate. The combination of features should robustify the
tracker [11].

9.3.1.2 Optical Flow-Based

Optical flow is the apparent motion in the image projection of 3D object in the
world. The displacement [u v] of every pixel [x y] from one frame to the next
one is computed assuming that the intensity remains constant. This is known as the

9 Model-Based Pose Estimation 159

brightness constancy assumption and it may be written as I (x, y, t − 1) = I (x +
u,y + v, t). The first-order Taylor expansion of the right hand side of the equation
leads to the remarkable normal optical flow constraint equation [33],

[
Ix Iy

] ·
[
u

v

]
− It = 0, (9.49)

where Ix, Iy and It are the spatial and temporal derivatives of the image. Gener-
ally, neighboring pixels are assumed to move together according to a given motion
model. Bregler et al. [9, 10] used a human motion model to parameterize the motion
flow [u v]. Specifically, he finds for every pixel in the image the corresponding 3D
point in the human model ps . Then the motion [u v] is simply given by the projec-
tion of the 3D point displacement Δps onto the image plane. This can be written
as

[
Ix Iy

] · Prc(Δps) − It = 0, (9.50)

where we recall that Prc denotes projection on the image plane (in [9, 10] an or-
thographic camera projection is assumed), and the point displacement is given by
Δps = JxΔxt (9.36). Note the strong correlation with correspondence-based al-
gorithms by interpreting (9.50) as the linearization of the error function ei (xt) =
I (x + u,y + v, t) − I (x, y) for one correspondence. Here only [u v] depend on the
pose parameters. The total error function e(xt) can be interpreted then as the sum of
squared pixel intensity differences. Unfortunately, approaches relying exclusively
on optical flow have two main drawbacks. First, when the motion is large, the Tay-
lor expansion in (9.49) produces large estimate errors. Second, while image features
like edges and silhouettes provide an absolute measurement, relying on optical flow
causes error accumulation which results in drift and tracking failure [31]. Neverthe-
less, [10] was the first work in human pose estimation to use the elegant twists and
exponential maps formulation from the robotics community.

9.3.1.3 Region-Based

Region-based methods are based on separating the foreground figure (the human
silhouette) from the background by maximizing the dissimilarity between region
density functions (usually the density functions are approximated by simple his-
tograms of pixel intensities and colors). Popular approaches to achieve this are level
sets or graph-cuts [8, 13]. This process can be coupled with human pose estima-
tion in an EM scheme. An initial human pose estimate defines two regions in the
image, namely the interior of the projected silhouette and the exterior. This initial
boundary is then used as a shape prior for a level-set segmentation. Thereafter, corre-
spondences between the segmentation and the projected silhouette are obtained and
the pose is estimated using a correspondence-based method. This process of pose
estimation and segmentation is iterated until convergence. Some works have cou-
pled the feature extraction and the descent strategy. The work by [17, 40] skips the
segmentation step and directly shifts the points belonging to the occluding contour

160 G. Pons-Moll and B. Rosenhahn

r̃ ∈ O inwards or outwards (orthogonal to the contour line) according to the poste-
rior probability densities. If the foreground posterior is bigger than the background
posterior the point is shifted outwards, otherwise the point is shifted inwards, see
Fig. 9.6. This implicitly generates correspondence pairs between points and shifted
points which feed a correspondence-based tracker.

9.3.1.4 Probabilistic Interpretation

We have seen that local optimization methods, either correspondence-based, optical
flow or region-based are based on defining an error function and linearizing the
residual error vector via its Jacobian to find a descent step. As a final comment, we
note that one can give a probabilistic interpretation to the error functions defined
above. Gathering image observations at time t in a random vector yt , (observations
can be 2D point locations, lines, 3D points, feature descriptors, appearance, . . .) the
MAP estimate is given by

xt,MAP = arg max
xt

p(xt |yt) = arg max
xt

p(yt |xt)p(xt), (9.51)

where p(yt |xt) is the likelihood of the observations for a given pose xt and p(xt)

is the prior knowledge we have about human motion (which will be discussed in
the next chapter). If the errors associated with the observations are independent and
have a Gaussian distribution, the likelihood takes the form

p(xt |yt) = p(yt |xt)p(xt) ∝ exp

(

−
N∑

i

e2
i

(
yi
t |xt

)
)

p(xt), (9.52)

where e2
i (y

i
t |xt) is the individual error for a given image observation. Equivalently

to (9.51), the MAP estimate can be obtained by the minimization of the negative
log-likelihood and an additional prior term ep(xt)

xMAP = arg min
xt

− log
(
p(yt |xt)

) − log
(
p(xt)

) = arg min
xt

e(xt) + ep(xt). (9.53)

Therefore, the minimization of the sum of squared error functions e(x) defined in
the previous subsections (e.g. (9.40), (9.47) and (9.48)) are equivalent to a MAP
estimator if the observation errors are independent and Gaussian (without prior it
is actually equivalent to a maximum likelihood (ML) estimator). Consequently, the
error function should be designed to model the cost density associated with the
observations [45]. This interpretation will be particularly useful when we see opti-
mization methods based on stochastic search. Probabilistic formulation of the pose
tracking problem is more thoroughly discussed in Sect. 10.1.1 of Chap. 10.

9 Model-Based Pose Estimation 161

9.3.2 Particle-Based Optimization and Filtering

A well known problem of local optimization methods is that since they are based
on propagating a single pose hypothesis, when there is a tracking error the system
can in general not recover from it. To overcome this limitation, stochastic search
techniques have been introduced for human pose estimation. This group of methods
are based on approximating the likelihood of the image given the pose parameters
by propagating a set of particles from one time step to the next one.

9.3.2.1 Particle Filter

Problems in human pose estimation arise from kinematic singularities, depth and
orientation ambiguities and occlusions. For all these reasons the posterior density
p(xt |y1:t) and the observation process p(yt |xt) are highly peaked and highly multi-
modal. The image likelihood p(yt |xt) is the probability of observing certain image
features given a pose xt , and p(xt |y1:t) is the probability of the pose parameters
considering the history of all observations from previous images 1 : t . To see this
multimodality, note that many configurations in pose parameter space x explain well
the observations y1:t (for example any rotation by an angle α about the axis of a
limb will project to almost the same image location). It is well known that in this
case a Kalman filter will fail. In these cases the posterior can be approximated by a
particle filter.2 A particle filter approximates the posterior p(xt |y1:t) by a set of par-
ticles {π(i)

t ,x(i)
t }Ni=1 where the weights are normalized so that

∑
N π

(i)
t = 1. Each

particle x(i)
t corresponds to one configuration of pose parameters (9.33), and the

weights are chosen to be proportional to the likelihood π(i) ∝ p(yt |xt = x(i)
t). At

each time step the pose parameters can be estimated by the mean of the weighted
particles,

x∗
t = Ex[xt] �

∑

N

π
(i)
t x(i)

t (9.54)

or by the mode of the particle set x∗
t =Mx[xt] = x(i)

t with π
(i)
t = max(π

(n)
t).

Assuming a first-order Markov process (p(xt |x1:t−1) = p(xt |xt−1)) the posterior
distribution can be updated recursively:

p(xt |y1:t) ∝ p(yt |xt)p(xt)

∫
p(xt |xt−1)p(xt−1|y1:t−1) dxt−1, (9.55)

where the integral computes the pose prediction from the previous time step pos-
terior p(xt−1|y1:t−1) propagated with the dynamical model p(xt |xt−1). The pre-
diction is then weighted by the likelihood function p(yt |xt) times the prior p(xt) if
available. In a particle filter setting, (9.55) is approximated by importance sampling.

2See also Chap. I, Sect. 6.2.2.

162 G. Pons-Moll and B. Rosenhahn

Fig. 9.7 Particle Filter: on the left the weighting function is shown as a function of the pose
parameters. The function is multimodal and it is difficult to tell where the maximum is from the
particle distribution. On the right: the weighting function is evaluated for every particle x(i)

t . The
weighting function should be fast to evaluate, in this example, it consists of a simple overlap
measure between the particle silhouette and the chamfer distance transformed image silhouette

Given a set of weighted particles approximating the posterior in the previous
frame P+

t−1 := {π(i)
t−1,x(i)

t−1}Ni=1, N particles are drawn from Pt−1 with replacement
and probability proportional to their weights obtaining a new set of unweighted
particles {x̃(i)

t−1}Ni=1. Thereafter, the particles are propagated to the next frame by

sampling from the dynamical model p(xt |x̃(i)
t−1) producing a new unweighted set of

predictions P−
t := {x(i)

t }Ni=1. Finally, every particle in P−
t is weighted according

to the likelihood in the new frame π
(i)
t = p(yt |x(i)

t) obtaining the final weighted set
P+

t := {π(i)
t ,x(i)

t }Ni=1 that approximates the updated posterior p(xt |y1:t).

Likelihood functions: Ideally, to model the observation process p(yt |xt) the
complicated image formation process has to be synthesized, i.e., illumination, hu-
man appearance rendering on the image, clothing, occlusions, shadows, etc. Since
p(yt |xt) has to be evaluated for every particle in the set p(yt |xt = x(i)

t), this is ob-
viously computationally infeasible. In practice, to make the problem tractable an
intuitive function w(yt ,xt = x(i)

t) is constructed that approximates the probability
p(yt |x = x(i)

k). This function takes into account only image observations yt that can
be modeled easy and efficiently (e.g., edges, coarse foreground appearance or sil-
houettes). Actually, the error functions e(xt) described for local optimization might
be used to set the weights w as

w
(
yt ,xt = x(i)

t

) = exp
(−e

(
x(i)
t

))
, (9.56)

where, as explained in Sect. 9.3.1.4, we interpret the error as the cost density as-
sociated with the observations. To gain in efficiency, a chamfer distance can be
pre-computed in the original image silhouette or edge map, see Fig. 9.7. Then,
simple overlap measures between the synthesized particle silhouette and the cham-
fer distance image are computed [19, 23, 51]. Another commonly used feature in
the weighting function is appearance, whose associated cost can be evaluated with

9 Model-Based Pose Estimation 163

histogram comparison [23, 42]. For a comparative study of the influence of dif-
ferent likelihood/weighting functions we refer the reader to [43]. Nonetheless, the
computation of w(yt ,xt = x(i)

t) is a very expensive operation if it has to be eval-
uated for many particles. In addition, the number of particles required to approxi-
mate p(xt |y1:t) grows exponentially with the dimensionality of x, which makes the
particle filter intractable for realistic human models with more than 30 DoF. Fur-
thermore, even using a large number of particles the search can be misdirected if
many local modes are present in w(yt ,xt = x(i)

t); see Fig. 9.7.

9.3.2.2 Annealed Particle Filter

The annealed particle filter (APF) is a modification of the particle filter and it was
introduced for human pose estimation by Deutscher et al. [19]. The goal here is
to modify the particle filter such that the number of needed particles is drastically
reduced and the particles do not congregate around local maxima. The APF is moti-
vated from simulated annealing methods designed for global optimization of multi-
modal functions [29]. The key idea is to gradually introduce the influence of narrow
peaks in the weighting function w(yt ,xt). This is achieved by starting a search run
in successive layers gradually changing the weighting function as

wm(yt ,xt) = w(yt ,xt)
βm, (9.57)

for β0 > β1 > · · · > βM . The run is started at layer M , where wM is broad and
reflects the overall trend of w without the influence of so many local maxima. As
we move to the next layer, β increases and therefore the local peaks become more
accentuated. For initialization, an initial set of samples is drawn from a proposal
distribution qM+1. During tracking we might choose this distribution to be the set
of particles from the previous frame or the propagated particles if we use a motion
model. For initialization in the first frame the distribution should be spread with a
high variance, see for example [22]. Once the algorithm is initialized the optimiza-
tion consists of the following steps executed at every layer: weighting, resampling
and diffusion, see Fig. 9.8 and the pseudo code in Algorithm 1.

• Weighting: The surviving particles of the previous layer are assigned new weights
wt,m(yt ,x(i)

t,m)βm with the new annealing scheme βm. At this point a new proposal

distribution has been formed qm = {π(i)
t,m,x(i)

t,m}Ni=1.
• Resampling: N new samples are drawn from the distribution qm with probability

equal to the weights, this can be efficiently done with multinomial sampling. Note
that particles with high weight (low error) will be selected with higher probabil-
ity and therefore a higher number of particles concentrate around the maximum
of the weighting function. Gall et al. [21, 23] proposes a generalization of the
resampling strategy that improves the performance of the APF. In this modifi-
cation, particles with high weight are with high probability retained in the set
without replacement.

164 G. Pons-Moll and B. Rosenhahn

Fig. 9.8 Annealed particle filter: At each layer the weighting, resampling and diffusion steps are
performed. The influence of the peaks is gradually introduced into the weighting function wm.
Consequently, the particles converge at the global maximum in the last layer w0 and do not get
trapped in local maxima peaks as opposed to the standard particle filter. Additionally, on the left
column, the distribution of the particles projected to the image is shown, where particles with
higher weights are brighter (left column images are courtesy of Gall et al. [23])

• Diffusion: In order to explore the search space the particles are diffused by some
function. A common choice is to shift every particle by adding a sample from
a multivariate Gaussian with covariance Σm. The covariance Σm can be chosen
to be proportional to the particle set variance since this provides a measure of
uncertainty (The more uncertainty, the farther away we have to explore the search
space.) The run in the layer terminates with the diffusion step and the particles
are used to initialize the weighting step of the next layer.

9 Model-Based Pose Estimation 165

Algorithm 1 Annealed particle filter
Require: number of layers M , number of samples N , initial distribution qM+1,

Initialize: Draw N initial samples from q → x(i)
t,m

for layer m = M to 0 do
1. WEIGHTING
start from the set of unweighted particles of the previous layer
for i = 1 to N do

compute wt,m(yt ,x(i)
t,m)βm

set π
(i)
t,m ∝ wt,m(yt ,x(i)

t,m)βm

end for
set qm = {π(i)

t,m,x(i)
t,m}Ni=1

2. RESAMPLING
draw N samples from qt,m → x(i)

t,m {Can be done with multinomial sampling}
3. DIFFUSION
x(i)
t,m−1= x(i)

t,m + Bt,m {Bt,m is a sample from a multivariate Gaussian with N (0,Σ)}
end for

Once the algorithm has finished the last annealing run, the pose estimate is ob-
tained by the mean of the final set of particles of the last layer, x∗

t = Ext [q0] =
∑

i π
(i)
t,0x(i)

t,0. Although the APF can be used recursively as the standard PF in (9.55)
using some heuristics, it can be considered a single frame global optimization algo-
rithm. While the APF is computationally more efficient in locating global minima
in the likelihood function p(yt |xt) than the particle filter, the main disadvantage is
not being able to work within a robust Bayesian framework [19]. The reason for
that is that the set of particles of q0 congregate only around one maximum of the
observation process p(yt |xt) at the current frame t . Therefore, the particles are not
well distributed for the next frame and usually a heuristic has to be used to spread
them to search in the next frame. By contrast, in the PF (which needs much more
samples) the final particle set represents the total posterior p(xt |y1:t) which might
contain multiple maxima. Therefore the PF can represent inherent ambiguities by
maintaining multiple modes at the expense of a significant loss in accuracy.

9.3.2.3 Tailored Optimization Methods

Although an exhaustive survey of the proposed sampling methods and likelihood
functions used in the literature for human tracking is out of the scope of this chap-
ter, it is worth to highlight some optimization procedures tailored for the problem of
human pose estimation. Choo and Fleet [15] use a Markov Chain similar to (9.55)
but use every particle as initialization for local optimization on the likelihood func-
tion. Similarly, Sminchisescu and Triggs [45] also combine particle-based sampling
with local optimization, but additionally sample along the most uncertain directions
calculated from the local likelihood Hessian matrix at the fitted optima. Along this
lines, importance samplers have been proposed that focus samples on regions likely
to contain transitions states leading to nearby minima [46, 47]. Another way to lo-
cate multiple optima in monocular images is to exploit the geometry of the problem

166 G. Pons-Moll and B. Rosenhahn

to deterministically enumerate the set of poses that result in the same projection [48,
50]. To make the sampling tractable in the high-dimensional space, state partitions
have also been used [20, 24]. These partitions are either specified manually by se-
quentially tracking different kinematic branches (e.g. torso, limbs and head) [24]
or selected automatically from the parameter variances in the particle set [20]. Ev-
ery optimization scheme has its own advantages/disadvantages but a common key
component in all of them for successful tracking is a good background subtraction.

9.4 Discussion

The basic mathematical tools necessary for anyone who wants to implement a hu-
man pose estimation system have been introduced, namely kinematic structure rep-
resentation and model creation. A unified formulation has been presented for the
most common model-based pose estimation algorithms seen in the literature. We
have seen that the model image association problem for pose estimation is usu-
ally formulated as the minimization/maximization of an error/likelihood function.
The two main strategies have been described, namely local and particle-based opti-
mization. Local optimization methods are faster and more accurate but in practice,
if there are visual ambiguities, or really fast motions, the tracker might fail catas-
trophically. To achieve more robustness, particle filters can be used because they
can represent uncertainty through a rigorous Bayesian paradigm. The problem here
is that the number of particles needed to achieve reasonable results grows expo-
nentially with the dimensionality of the pose parameter space which makes them
unpractical for human models with more than 20 DoF. To reduce the number of
needed particles, the annealed particle filter can be used at the expense of not being
able to work in a fully Bayesian framework. A further problem of global optimiza-
tion methods is that while robust, they do not provide a single temporally consistent
motion but rather a jittery motion which must be post-processed to obtain visually
acceptable results. Combinations of global and local optimization have also been
proposed to compensate for the drawbacks of each strategy [15, 23, 45]. Nonethe-
less, current approaches do not capture detailed movement such as hand orientation
or axial arm rotation. This stems from depth and orientation ambiguities inherent in
the images (i.e., any rotation about a limb axis projects to the same image). To over-
come this limitations Pons-Moll et al. [37] proposes a hybrid tracker that combines
correspondence-based local optimization with five inertial sensors placed at body
extremities to obtain a much accurate and detailed human tracker, see Fig. 9.9. The
key idea is to fuse both sensor types in a joint optimization to exploit the advantages
of each sensor type (accurate position from images and accurate orientation from
inertial sensors).

Although over the last decade significant progress has been made in model-based
human pose estimation, there remain a number of open problems and challenges.

First, while tracking of walking motions in semi-controlled settings is more or
less reliable, robust tracking of arbitrary and highly dynamic motions is still chal-
lenging even in controlled setups. Second, monocular tracking is a highly ambigu-
ous and difficult problem which is still far from being solved. Although monocular

9 Model-Based Pose Estimation 167

Fig. 9.9 Left: current approaches, either local or global optimization cannot capture axial rotation
accurately; the combination of a video-based tracker with inertial sensors (hybrid tracker) allows
to capture detailed motion. Right: motion capture in uncontrolled scenarios is one of the principal
future challenges (outdoor images on the right are courtesy of Hasler et al. [27])

tracking has attracted a lot of attention because of the complexity of the problem,
most solutions rely on restrictive setups with very simple motions. Monocular track-
ing is particularly interesting because in many practical settings only a single view
sequence is available as in video footage archives such as YouTube. Third, tracking
arbitrary motions in outdoor settings has been mostly unaddressed [27] Fig. 9.9, and
remains one of the open problems in computer vision. Indeed, this must be one of
the final goals since in these scenarios standard commercial motion capture systems
based on optical markers cannot be used. Outdoor human tracking would allow to
capture sport motions in their real competitive setup. Fourth, tracking people in the
office or in the streets interacting with the environment is still an extremely chal-
lenging problem to be solved. In this chapter we have covered the mathematical
tools for generative model-based pose estimation. Another active research area to
increase robustness and accuracy is the modeling of priors for human motion; this
involves using temporal context, building motion and physical models which will
be described in the next chapter.

References

1. Allen, B., Curless, B., Popović, Z.: Articulated body deformation from range scan data. In:
ACM Transactions on Graphics, pp. 612–619. ACM, New York (2002) [151]

2. Allen, B., Curless, B., Popović, Z.: The space of human body shapes: Reconstruction and
parameterization from range scans. In: ACM Transactions on Graphics, pp. 587–594. ACM,
New York (2003) [153]

3. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape com-
pletion and animation of people. ACM Trans. Graph. 24, 408–416 (2005) [153]

4. Anguelov, D., Srinivasan, P., Pang, H.C., Koller, D., Thrun, S., Davis, J.: The correlated cor-
respondence algorithm for unsupervised registration of nonrigid surfaces. In: Advances in
Neural Information Processing Systems, p. 33. MIT Press, Cambridge (2005) [151]

5. Balan, A.O., Sigal, L., Black, M.J., Davis, J.E., Haussecker, H.W.: Detailed human shape and
pose from images. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (2007) [153]

6. Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. In: ACM Transac-
tions on Graphics, p. 72. ACM, New York (2007) [152]

7. Besl, P., McKay, N.: A method for registration of 3d shapes. IEEE Trans. Pattern Anal. Mach.
Intell. 12, 239–256 (1992) [157]

168 G. Pons-Moll and B. Rosenhahn

8. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts.
IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001) [159]

9. Bregler, C., Malik, J.: Tracking people with twists and exponential maps. In: IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 8–15 (1998) [159]

10. Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human
kinematics. Int. J. Comput. Vis. 56, 179–194 (2004) [159]

11. Brox, T., Rosenhahn, B., Gall, J., Cremers, D.: Combined region and motion-based 3d tracking
of rigid and articulated objects. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 402–415 (2010)
[158]

12. Cagniart, C., Boyer, E., Ilic, S.: Free-form mesh tracking: A patch-based approach. In: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1339–1346
(2010) [153]

13. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2),
266–277 (2001) [159]

14. Cheung, K.M.G., Baker, S., Kanade, T.: Shape-from-silhouette of articulated objects and its
use for human body kinematics estimation and motion capture. In: IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 1 (2003) [158]

15. Choo, K., Fleet, D.J.: People tracking using hybrid Monte Carlo filtering. In: IEEE Interna-
tional Conference on Computer Vision, vol. 2, pp. 321–328 (2001) [165,166]

16. Corazza, S., Mündermann, L., Gambaretto, E., Ferrigno, G., Andriacchi, T.P.: Markerless mo-
tion capture through visual hull, articulated icp and subject specific model generation. Int. J.
Comput. Vis. 87(1), 156–169 (2010) [158]

17. Dambreville, S., Sandhu, R., Yezzi, A., Tannenbaum, A.: Robust 3d pose estimation and effi-
cient 2d region-based segmentation from a 3d shape prior. In: Forsyth, D., Torr, P., Zisserman,
A. (eds.) European Conference on Computer Vision. Lecture Notes in Computer Science, vol.
5303, pp. 169–182. Springer, Berlin (2008) [159]

18. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P., Thrun, S.: Performance capture
from sparse multi-view video. In: ACM Transactions on Graphics, pp. 1–10. ACM, New York
(2008) [153]

19. Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle fil-
tering. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
vol. 2, pp. 126–133 (2000) [162,163,165]

20. Deutscher, J., Davison, A., Reid, I.: Automatic partitioning of high dimensional search spaces
associated with articulated body motion capture. In: IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 2 (2001) [166]

21. Gall, J., Potthoff, J., Schnorr, C., Rosenhahn, B., Seidel, H.: Interacting and annealing particle
filters: Mathematics and a recipe for applications. J. Math. Imaging Vis. 28, 1–18 (2007) [163]

22. Gall, J., Rosenhahn, B., Seidel, H.: Clustered stochastic optimization for object recognition
and pose estimation. In: DAGM. Lecture Notes in Computer Science, vol. 4713, pp. 32–41.
Springer, Berlin (2007) [163]

23. Gall, J., Rosenhahn, B., Brox, T., Seidel, H.: Optimization and filtering for human motion
capture. Int. J. Comput. Vis. 87, 75–92 (2010) [162-164,166]

24. Gavrila, D., Davis, L.: 3D model based tracking of humans in action: A multiview approach.
In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (1996)
[166]

25. Grassia, S.: Practical parameterization of rotations using the exponential map. J. Graph. Tools
3, 29–48 (1998) [143]

26. Hasler, N., Ackermann, H., Rosenhahn, B., Thormaehlen, T., Seidel, H.: Multilinear pose
and body shape estimation of dressed subjects from image sets. In: IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 1823–1830 (2010) [153]

27. Hasler, N., Rosenhahn, B., Thormaehlen, T., Wand, M., Gall, J., Seidel, H.-P.: Markerless
motion capture with unsynchronized moving cameras. In: IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 224–231 (2009) [167]

9 Model-Based Pose Estimation 169

28. Ju, S.X., Black, M.J., Yacoob, Y.: Cardboard people: A parameterized model of articulated
image motion. In: International Workshop on Automatic Face and Gesture Recognition, pp.
38–44 (1996) [151]

29. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science
220(4598), 671–680 (1983) [163]

30. Laurentini, A.: The visual hull concept for silhouette-based image understanding. IEEE Trans.
Pattern Anal. Mach. Intell. 16(2), 150–162 (1994) [158]

31. Lepetit, V., Fua, P.: Monocular model-based 3d tracking of rigid objects: A survey. Found.
Trends Comput. Graph. Vis. 1(1), 1–89 (2005) [159]

32. Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape inter-
polation and skeleton-driven deformation. In: ACM Transactions on Graphics, pp. 165–172.
ACM, New York (2000) [152]

33. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo
vision. In: International Joint Conference on Artificial Intelligence, vol. 3, pp. 674–679 (1981)
[159]

34. Murray, R.M., Li, Z., Sastry, S.S.: Mathematical Introduction to Robotic Manipulation. CRC
Press, Baton Rouge (1994) [140,143,145,146,148]

35. Piccardi, M.: Background subtraction techniques: A review. In: Proc. IEEE Int Systems, Man
and Cybernetics Conf., vol. 4, pp. 3099–3104 (2004) [154]

36. Plankers, R., Fua, P.: Articulated soft objects for video-based body modeling. In: IEEE Inter-
national Conference on Computer Vision, vol. 1, pp. 394–401 (2001) [151]

37. Pons-Moll, G., Baak, A., Helten, T., Mueller, M., Seidel, H.-P., Rosenhahn, B.: Multisensor-
fusion for 3d full-body human motion capture. In: IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 663–670 (2010) [166]

38. Pons-Moll, G., Rosenhahn, B.: Ball joints for marker-less human motion capture. In: Proc.
IEEE Workshop Applications of Computer Vision (WACV) (2009) [149]

39. Rosenhahn, B., Brox, T.: Scaled motion dynamics for markerless motion capture. In: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (2007) [157]

40. Schmaltz, C., Rosenhahn, B., Brox, T., Cremers, D., Weickert, J., Wietzke, L., Sommer, G.:
Region-based pose tracking. In: Proc. 3rd Iberian Conference on Pattern Recognition and
Image Analysis, vol. 4478, pp. 56–63 (2007) [159]

41. Shoemake, K.: Animating rotation with quaternion curves. ACM SIGGRAPH Computer
Graphics 19, 245–254 (1985) [143]

42. Sidenbladh, H., Black, M., Fleet, D.: Stochastic tracking of 3d human figures using 2d image
motion. In: Vernon, D. (ed.) European Conference on Computer Vision. Lecture Notes in
Computer Science, vol. 1843, pp. 702–718. Springer, Berlin (2000) [151,163]

43. Sigal, L., Balan, A.O., Black, M.J.: Humaneva: Synchronized video and motion capture
dataset and baseline algorithm for evaluation of articulated human motion. Int. J. Comput.
Vis. 87(1), 4–27 (2010) [163]

44. Sminchisescu, C.: Consistency and coupling in human model likelihoods. In: International
Workshop on Automatic Face and Gesture Recognition (2002) [155]

45. Sminchisescu, C., Triggs, B.: Covariance scaled sampling for monocular 3d body tracking.
In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1
(2001) [151,160,165]

46. Sminchisescu, C., Triggs, B.: Building roadmaps of local minima of visual models. In: Euro-
pean Conference on Computer Vision, pp. 566–582 (2002) [165]

47. Sminchisescu, C., Triggs, B.: Hyperdynamics importance sampling. In: European Conference
on Computer Vision, pp. 769–783 (2002) [165]

48. Sminchisescu, C., Triggs, B.: Kinematic jump processes for monocular 3d human tracking.
In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2003)
[166]

49. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. In: ACM Transactions
on Graphics, pp. 399–405. ACM, New York (2004) [151]

170 G. Pons-Moll and B. Rosenhahn

50. Taylor, C.J.: Reconstruction of articulated objects from point correspondences in a single un-
calibrated image. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 1, pp. 677–684 (2000) [166]

51. Vondrak, M., Sigal, L., Jenkins, O.C.: Physical simulation for probabilistic motion tracking.
In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2008)
[162]

52. Zhang, Z.: Iterative points matching for registration of free form curves and surfaces. Int. J.
Comput. Vis. 13(2), 119–152 (1994) [157]

	Chapter 9: Model-Based Pose Estimation
	9.1 Kinematic Parametrization
	9.1.1 Rotation Matrices
	9.1.2 Euler Angles
	9.1.3 Quaternions
	9.1.4 Axis-Angle
	9.1.4.1 The Exponential Formula
	9.1.4.2 Exponential Maps for Rigid Body Motions
	9.1.4.3 The Logarithm
	9.1.4.4 Adjoint Transformation

	9.1.5 Kinematic Chains
	9.1.5.1 The Articulated Jacobian

	9.1.6 Human Pose Parametrization
	9.1.6.1 The Pose Jacobian

	9.2 Model Creation
	9.2.1 Geometric Primitives
	9.2.2 Detailed Body Scans
	9.2.3 Detailed Shape from Images

	9.3 Optimization
	9.3.1 Local Optimization
	9.3.1.1 Correspondence-Based
	Feature extraction:
	Model image association:
	Descent strategies:
	Different error functions:
	Combining features:

	9.3.1.2 Optical Flow-Based
	9.3.1.3 Region-Based
	9.3.1.4 Probabilistic Interpretation

	9.3.2 Particle-Based Optimization and Filtering
	9.3.2.1 Particle Filter
	Likelihood functions:

	9.3.2.2 Annealed Particle Filter
	9.3.2.3 Tailored Optimization Methods

	9.4 Discussion
	 References

