
Int J Comput Vis (2014) 106:252–268
DOI 10.1007/s11263-013-0670-8

Branch&Rank for Efficient Object Detection

Alain D. Lehmann · Peter V. Gehler · Luc Van Gool

Received: 14 September 2012 / Accepted: 24 October 2013 / Published online: 24 December 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Ranking hypothesis sets is a powerful concept
for efficient object detection. In this work, we propose a
branch&rank scheme that detects objects with often less
than 100 ranking operations. This efficiency enables the use
of strong and also costly classifiers like non-linear SVMs
with RBF-χ2 kernels. We thereby relieve an inherent lim-
itation of branch&bound methods as bounds are often not
tight enough to be effective in practice. Our approach fea-
tures three key components: a ranking function that operates
on sets of hypotheses and a grouping of these into differ-
ent tasks. Detection efficiency results from adaptively sub-
dividing the object search space into decreasingly smaller
sets. This is inherited from branch&bound, while the ranking
function supersedes a tight bound which is often unavailable
(except for rather limited function classes). The grouping
makes the system effective: it separates image classification
from object recognition, yet combines them in a single formu-
lation, phrased as a structured SVM problem. A novel aspect
of branch&rank is that a better ranking function is expected
to decrease the number of classifier calls during detection.
We use the VOC’07 dataset to demonstrate the algorithmic
properties of branch&rank.

Keywords Branch&rank · Object detection · Non-linear
kernel classifier · Sub-linear detection

A. D. Lehmann (B) · L. V. Gool
Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland
e-mail: lehmann@vision.ee.ethz.ch; alain.lehmann@gmail.com

P. V. Gehler
MPI for Intelligent Systems, Tübingen, Germany
e-mail: pgehler@tuebingen.mpg.de

L. V. Gool
ESAT-PSI/IBBT, KU Leuven, Leuven, Belgium
e-mail: vangool@vision.ee.ethz.ch

1 Introduction

Object class detection in images is challenging because of
two problems. First, object appearances exhibit large vari-
ations due to intra-class variability, illumination changes,
etc. Second, objects may appear anywhere in an image with
unknown scale, and need to be localised. Hence, detectors
have to simultaneously cope with appearance variations and
a large search space of possible object positions.

Handling the appearance variations is a crucial factor for
good detection accuracy and thus to score well in current
object detection benchmarks. Much progress has been made
lately, manifesting itself in increasing evaluation scores of
the VOC benchmark (Everingham et al. 2007) during the
last years. These advances suggest that strong classifiers and
combination of different image descriptors are required; non-
linear SVMs are constantly found to be well suited for this
task (Vedaldi et al. 2009; Gehler and Nowozin 2009). Unfor-
tunately, such classifiers are expensive to evaluate which
makes it challenging to master the large search space: suffi-
ciently fine grained sliding window search typically requires
>10 k classifier evaluations. This imposes a limited com-
putational budget per classifier call that renders non-linear
SVMs intractable. This leaves two possible options to han-
dle the search space: (a) reducing the cost of a single classifier
evaluation (Viola and Jones 2004; Vedaldi et al. 2009) or (b)
reducing the number of classifier calls (Lampert et al. 2009;
Lehmann et al. 2011b). Let us stress this point, we distinguish
between the cost of the classifier and the number of times it
is called. These two factors are orthogonal and their product
yields the total runtime (c.f. Fig. 1). We next discuss both
options separately, but note that they can also be combined
(Lampert 2010; Weiss et al. 2010).

Reducing the classifier cost is a common strategy to deal
with the limited computational resources. Cascade classi-

123

Int J Comput Vis (2014) 106:252–268 253

Fig. 1 Computational aspects (i.e., efficiency and speed) are impor-
tant, although current benchmarks exclusively focus on detection accu-
racy. Efficiency captures an algorithm’s scalability to locate an object
among n possible hypotheses (expressed with big-O notation). Speed
and accuracy depend on the choice of the classifier (including its train-
ing and used features). We advocate to control all three properties, but to
first focus on efficiency as it dominates for growing n (e.g. multi-class
setups)

fiers (Viola and Jones 2004; Vedaldi et al. 2009; Felzen-
szwalb et al. 2010) are prominent examples: they reject many
hypotheses with a simple criterion and thereby avoid many
computations. However, they do not per-se reduce the num-
ber of calls and the total runtime still scales linearly in the
number of detection sites. Similarly, one can utilise faster
classifiers (Gall and Lempitsky 2009; Zhang et al. 2011a),
optimise the implementation (Wei and Tao 2010), or leverage
the massive parallelism of GPU architectures (Prisacariu and
Reid 2009; Wojek et al. 2008). All these approaches process
the search space exhaustively and are thus not scalable. In
other words, reducing the classifier cost makes a detector
faster but not efficient.

Reducing the number of classifier calls is the alternative
method to make detection scalable. Branch&bound (Breuel
2002; Keysers et al. 2007; Lampert et al. 2009; Lehmann
et al. 2011b) is a promising approach that falls in this cat-
egory: it partitions the search space adaptively and thereby
avoids exhaustive search. Branch&bound operates on sets of
hypotheses and uses a bounding function to process the most-
promising sets in a best-first order. This allows for sub-linear
runtime given a tight bound on the classifier function with
exhaustive search as worst-case complexity. Unfortunately,
bounds are generally not tight enough and the method’s effi-
ciency is still insufficient to deploy powerful (and thus often
costly) classifiers (c.f. Vedaldi et al. 2009); such classifiers
seem however essential to deal with the appearance varia-
tions. This indicates that the concept of bounds is a limiting
factor and we identify the notion of sets as the key to effi-
ciency. This paper sets out to rectify the problem of bounds:
branch&rank improves efficiency and therefore enables the
use of costly classifiers i.e., rich appearance models.

Branch&rank (Lehmann et al. 2011a) follows the ideas of
branch&bound but overcomes its limitations. Specifically,
we abandon the notion of bounds and thereby allow for arbi-
trary classifiers. We adopt the best-first search and “branch”
but do not “bound”. Instead, we explicitly integrate the idea

of scoring sets into the training problem. Intuitively speak-
ing we aim to “learn the bound”. More precisely, we learn
a ranking function that prioritises hypothesis sets that do
contain an object over those that do not. This branch&rank
scheme is more efficient and detects objects with often less
then 100 ranking operations. This enables the use of expen-
sive classifiers. Although we could apply the ranking para-
digm to arbitrary functions, we deliberately choose to work
with non-linear SVMs and RBF-χ2 kernels. These classifiers
have been shown to perform well (Gehler and Nowozin 2009;
Lazebnik et al. 2006; Vedaldi et al. 2009), but are generally
perceived as being too slow to be directly applicable. Yet, we
show that using only evaluations of these non-linear SVMs is
feasible. We train them in a multi-task setup which accounts
for the size of hypothesis sets; we thereby separate image
classification from object recognition, yet combine them in
a joint objective.

In summary, the benefits of ranking are the following:
(1) The ranking condition combines model estimation and
acceleration of the test-time problem in a joint objective:
improving the ranking function (classifiers) leads to better
and more efficient object detection. (2) The ranking condition
is flexible; it allows for arbitrary (ranking-)classifiers since
no bound has to be derived. (3) Branch&rank is efficient and
enables the use of strong and costly classifiers (like non-linear
SVMs) without the need for cascade-like approximations.

In the sequel, Sect. 2 presents related work and Sect. 3 cov-
ers the overal branch&rank algorithm. The reason for multi-
ple tasks as well as a SVM-based ranking function are pre-
sented in Sect. 4. Various compact set description are detailed
in Sect. 5, followed by experiments in Sect. 6.

2 Related Work

Branch&Bound. Branch&bound for bounding box detec-
tion (Lampert et al. 2009) pioneered the field of efficient
object detection; the number of classifier calls of such meth-
ods scales sub-linearly with the search space size. Its effi-
ciency depends on the availability of a tight bounding func-
tion, that, unfortunately, is only available for very small
function classes. The obvious bounds for non-linear SVMs
are simply not sufficiently tight to be of practical value.
This severely limits the use of this technique for the task
of object detection, that requires strong classification func-
tions. Approximate bounds which are tighter are shown to
accelerate convergence (Lehmann et al. 2011b). But again,
this was only shown for simple function classes. Moreover,
Lehmann et al. (2011b) give up on global optimality guaran-
tees, a much appreciated property of branch&bound (Lam-
pert et al. 2009). We will elaborate on optimality and discuss
the property of our method in Sect. 3.5.

123

254 Int J Comput Vis (2014) 106:252–268

Coarse- to- Fine. Coarse-to-fine detectors (Gangaputra
and Geman 2006; Pedersoli et al. 2010) also operate on sets.
However, they start with a uniform partitioning at the coars-
est level that still scales linearly (similar to a sliding-window
approach); only the finer levels partition subsets in an adap-
tive way. Gangaputra and Geman (2006) use a cost-to-power
criterion to learn how to partition a given set. They exam-
ine potential sets in a breadth-first order and prune non-
promising sets. Pedersoli et al. (2010) refine a set uniformly
and propagate only the locally best-scoring hypothesis to
the next finer level. This local non-maximum suppression
focuses on the most promising hypothesis (within a neigh-
bourhood) and prunes all others. In contrast, we start with
the entire search space, partition a set and explore the glob-
ally best option: We prioritise promising sets and we never
prune. In fact, the concept of pruning is closely related to the
idea of cascade detectors.

Cascades. Cascades have been used with much success
to reduce the computation cost of classifiers (Viola and Jones
2004; Vedaldi et al. 2009; Felzenszwalb et al. 2010). They
use simple criteria to reject many hypotheses and thereby
reduce the number of strong classifier evaluations. However,
they still process every bounding box exhaustively. In other
words cascades are fast but not efficient. Although the cas-
cading in (Felzenszwalb et al. 2010) does not examine every
possible part configuration, the root part (which is reported
as detection) is evaluated exhaustively as in a sliding-window
approach.

Adaptive Cascades. Furthermore, cascading and adap-
tive sub-division are two orthogonal techniques (Lampert
2010; Weiss et al. 2010). Structured ensemble cascades
(Weiss et al. 2010) leverage the coarse-to-fine approach and
only subdivide hypothesis sets that have not yet been filtered.
Again, they prune whereas we prioritise sets. Moreover, they
work on pose estimation and focus on localising part config-
urations; their images are “largely focused on a single actor”
and thus avoid the object localisation that we tackle in this
work. Lampert (2010) is more closely related to our approach
as it does best-first search and it presents a cascade of bounds.
The bounding still limits the possible functions to be used and
only the final cascade stage is non-linear; our approach uses
non-linear SVMs throughout the entire search.

Candidate Proposals. Other approaches reduce the
number of classifier calls by proposing possible bounding
boxes that can subsequently be verified using an object detec-
tor of choice. For example, Chum and Zisserman (2007),
Razavi et al. (2011) generate class-specific proposals based
on discriminative visual words while Alexe et al. (2010) pro-
pose class-independent object positions using various low-
level saliency measures. In object segmentation similar tech-
niques are applied with much success (Carreira and Smin-
chisescu 2010). Such two-step proposal-verification schemes
are effective but lack a joint objective function. Thus they are

difficult to optimise and the influence of each single part on
the entire system is not trivial to measure. Saliency-based
attention methods (Itti et al. 1998; Alexe et al. 2010) actually
reason in a bottom-up fashion driven by low-level cues. In
contrast, our ranking algorithm guides its attention based on
high-level hypotheses.

Context. Context is a valuable source of information that
many object detectors try to exploit; so does branch&rank.
A crucial difference w.r.t. other approaches is that they focus
on detection accuracy, while we address efficiency. The work
by Blaschko and Lampert (2009) is closest to ours as they
combine global and local context in an SVM setup. Their
aim is however to improve the detection confidence and it
is unclear if this positively affects the convergence of their
branch&bound approach. Moreover, they do not consider the
continuum between global and local context as we do. Object
priming (Torralba 2003) is another prominent example that
leverages global context: they capture the “gist” of a scene
(Oliva and Torralba 2001). Work along this line (Torralba
2003; Murphy et al. 2003; Bileschi and Wolf 2005; Torralba
et al. 2010; Harzallah et al. 2009) has shown that such holis-
tic image features boost detection accuracy, but computa-
tional aspects were not considered or improved. Finally, Wolf
and Bileschi (2006) argue that context is particularly help-
ful to detect “difficult” objects (e.g., small, low-resolution
instances) but not so much in the general case. They mea-
sured only accuracy though and branch&rank suggests that
context helps to improve detection efficiency.

3 Branch and Rank

3.1 Overview

Efficient detection means to find objects without examining
all possible hypotheses individually. This is possible as many
hypotheses are strongly correlated e.g., due to overlapping
bounding boxes or similarity of classes. These can be grouped
into sets and processed as one single entity. We first focus on
the core algorithm and thus postpone a detailed discussion
of sets to Sect. 5; the overall idea is sketched in Fig. 2.

Branch&rank (Lehmann et al. 2011a) aims to focus on
sets that contain objects, rather than spending computation
on sets that do not. The detector iteratively splits such sets
to eventually identify a single bounding box. The challenge
is to accurately decide which sets contain an object—and
should thus be split—without examining every set member
individually. To this end, we classify the sub-image that cov-
ers the union of every bounding-box of a set. This is a chal-
lenging task and we thus want to avoid making hard deci-
sions that would reject hypotheses prematurely. Therefore,
we keep a partitioning of the search space (represented by
sets) and refine (i.e., split/branch) sets that most likely con-

123

Int J Comput Vis (2014) 106:252–268 255

Fig. 2 Left branch&rank aims to efficiently find bounding boxes con-
taining an object white among all possible hypotheses. For illustrative
reasons let us assume all hypothesis are only those depicted by the
blue dots. Middle the algorithm uses hypothesis sets red rectangles

to partition the large search space (here 8 × 16 hypotheses). Efficient
detection results from refining sets that probably contain objects. Right
branch&rank classifies the sub-image that covers all bounding boxes of
a set to decide which set to refine next (Color figure online)

Table 1 Notation

We distinguish single hypothesis
λ, hypothesis sets �, and sets of
sets L by different letters. An
additional + superscript
indicates that at least one
positive annotation is contained

λ Parametrisation of a single bounding box

� Parametrisation of a set of bounding boxes

L The set of all sets of bounding boxes

L
+ ⊂ L The set of all sets containing at least one object

�+
j ∈ L

+ A set containing at least one annotated object

Y = {
λ+

i

}m
1 The training data: m ground truth annotations λ+

i

B(λ), B(�) (Four corner) bounding box for parametrisation λ and sets �

φ(�) Appearance descriptor for hypothesis set �

� : �×� �→ R (Set-valued) loss function for pair of examples

f : � �→ R Ranking function: provide a priority for hypothesis set �

f L A, f GT Loss-augmented and ground truth score function

q : � �→ {1, . . . , T } Task mapping to distinguish T different tasks.

wt , bt SVM weight vector and bias term for task t (with t = q(�))

tain an object. This search strategy traverses the hypotheses
set in a order that visits highest scoring elements first. In
combination with applying a detection threshold we can thus
avoid having to compute scores for all possible bounding
boxes in a principled way.

The efficiency of branch&rank results from splitting sets
that probably contain objects first, which naturally leads to
a ranking problem. This section details the theoretical back-
ground as well as the overall algorithm, while the next section
gives a concrete implementation.

3.2 Ranking Condition

The core of our detector is a ranking function. Its goal is to
order a priority queue: sets containing true detections should
be ranked higher than all others. More formally, let L be the
set of all hypothesis sets while L

+ represents only those that
contain at least one object. The ranking condition then reads
as

f (�̄) < f (�+) ∀�+ ∈ L
+, ∀�̄ ∈ L\L+, (1)

where the set �+ contains at least one object and �̄ con-
tains no object; our notation is summarised in Table 1 while
Fig. 3 illustrates the ranking condition. Learning a function
which aims to fulfill this condition is the topic of the next

Λ+"BBox" of Hypotheses Set

Λ−"BBox" of Hypotheses Set

Λ−f() +f()Λ<
Condition
Ranking

some elements ofΛ−

Fig. 3 The ranking condition: hypothesis set containing at least one
object blue should be ranked higher than sets not containing any objects
red. Perfect ranking results in logarithmic detection time; in practice,
we find objects with often less than 100 ranking operations (Color figure
online)

section. Let us now assume we had access to a function
f oracle that meets condition (1) for any observable image. In
that case, branch&rank first examines all sets that do contain
an object and the size of these sets decreases exponentially
fast (as we always split them into equal-sized subsets). A
perfect ranking function thus implies logarithmic detection
time.

123

256 Int J Comput Vis (2014) 106:252–268

Algorithm 1 Detector(ranking function f , image I)
D = ∅
priorityqueue.enqueue (∞,�0(I))
while True do

score, � = priorityqueue.dequeue_best()
if score ≤ τ then return D
elif minO L(�, D) > 0.5 then continue
elif |�| < ε then D = D ∪�
else for �i in split(�) do

priorityqueue.enqueue(f (�i),�i)

3.3 Best-First Search

Algorithm 1 summarises the adaptive, best-first subdivision
strategy. The search is governed by a priority queue each ele-
ment of which represents a set of hypotheses; the ordering
is according to the score of a ranking function. The algo-
rithm proceeds as follows. Initially, the whole search space
�0(I) is entered into the queue as a single element. Sub-
sequently at each step, the highest ranking element in the
priority queue is split into smaller subsets; they are subse-
quently scored and inserted into the priority queue. In case the
highest ranking hypothesis set is a single bounding box (or a
sufficiently small set) a detection is reported. This results in
a kD-tree partitioning of the entire search space. We detect
multiple instances by means of non-maximum suppression.
In contrast to commonly used sliding-window search, we
have to suppress already during the iterative splitting rather
than during a post-processing step. This is detailed in the next
subsection.

3.4 Non-maximum Suppression

An image may contain multiple object instances and we
would like to detect them all. Moreover we should avoid re-
detecting a given object twice as this counts as false positive.
Re-detections are usually eliminated with a non-maximum
suppression post-processing, but a best-first search algorithm
cannot wait for the post-processing: It would re-detect the
same instance over and over again and loose its sub-linear
runtime. We elude this problem with a simple suppression
scheme, while more elaborate approaches exist (Blaschko
2011; Desai et al. 2009).

Our best-first algorithm aims to detect local optima and we
assume that the first detection would survive a non-maximum
post-processing. Hence, we can directly suppress or penalize
hypotheses that would get suppressed by this detection. How-
ever, to maintain the efficiency of the algorithm, we have to
adapt the non-maximum suppression to sets of hypotheses.

The usual non-maximum suppression eliminates any
hypothesis λ that has a significant bounding-box B(λ)
intersection-over-union overlap (Everingham et al. 2007)

ol(λ, λi) = area(B(λ) ∩ B(λi))

area(B(λ) ∪ B(λi))
(2)

with a higher scoring detection λi . Consequently, we sup-
press a set if all of its elements exceed a certain threshold.
Therefore, what matters is the minimal overlap

minO L(�, D) = max
λi ∈D

min
λ∈� ol(λ, λi) (3)

with any previous detections λi ∈ D. We then suppress a set
� if minO L(�, D) > 0.5.1 This simple modification allows
for detecting multiple object instances. Although this step
suppresses certain hypotheses, the overall best-first search
should not be thought of a pruning method (as e.g., detection
cascades). The reason is that all objects contained in sup-
pressed sets would be eliminated by a usual non-maximum
suppression post-processing. Therefore, there is no need to
keep them in the priority queue.

3.5 Connection to Branch&Bound

A connection to branch&bound (Lehmann et al. 2009; Lam-
pert and Blaschko 2009) is evident from the name; this sub-
section comments on the relationship in more detail. First of
all, note that the only algorithmic difference is to replace the
ranking function while everything else remains unchanged.
Branch&bound prioritises sets by an upper bound ĝ(�) ≥
maxλ∈� g(λ) to a traditional bounding-box score function
g(λ). This leads to different properties and guarantees that
we want to elaborate.

Assumptions and Requirements. Branch&bound
requires that there exists a tight upper-bound for a given score
function. In contrast branch&rank assumes that it is possible
to efficiently decide whether a set (in our case represented by
a sub-image) contains an object or not. In fact, image clas-
sification addresses exactly this problem and it does so with
much success (Everingham et al. 2007). This suggests that
the assumption is valid in practice. Of course, it also suggests
that the detection strategy is challenged when objects are pre-
sented out-of-context (e.g., a car in a kitchen). However, it
seems that this assumption is rather benign when compared
to branch&bound’s requirement of a tight bound (Vedaldi et
al. 2009).

On Convergence. We discussed that branch&rank has
logarithmic detection time in case of a perfect ranking func-
tion. This is in contrast to branch&bound where the efficiency
depends on the quality of the bound, which is unrelated to
the generalisation problem. In other words, given a perfect
bounding-box classifier g the runtime of branch&bound with
bound ĝ can still be linear time (e.g., ĝ(�) = ∞ except for
ĝ(λ) = g(λ)). Of course, we cannot expect perfect general-

1 To avoid a hard decision, one may subtract a penalty from the score
and re-schedule the element in the priority queue

123

Int J Comput Vis (2014) 106:252–268 257

isation in practice and every incorrect ranking increases the
number of iterations till detection. But we conclude that the
ranking condition couples accuracy and efficiency. This sug-
gests that the better a ranking function, the better and more
efficient the detector.

On Optimality. We follow Bottou and Bousquet (2008)
and distinguish the following types of errors. The approxi-
mation error which is due to the function class we search
a classifier in and the test-time error which is incurred by
only approximately solving the test-time search problem.
We neglect the third possible cause of an error, which is
the optimization error. This type of error results from solv-
ing learning problems approximately. For branch&bound as
in (Lampert et al. 2009) the test-time error is zero, but the
approximation error is high due to the limited function classes
for which tight bounds are known. Our approach incurs a test-
time error because we can not guarantee finding the best scor-
ing bounding box, but the approximation error decreases over
branch&bound because we can use richer function classes,
e.g., non-linear SVMs. The recent research on object detec-
tion (e.g. Vedaldi et al. 2009) indicates that the decrease of
the approximation error outweighs the test-time error. How-
ever, the optimization problem that we formulate next aims
to actively reduce the test-time error. A lower objective yields
a better ranking that should increase accuracy and speed up
convergence, both at the same time.

4 Multi-task SVM Ranking

This section presents a concrete ranking function along with
its training procedure. We aim for using non-linear SVMs as
they are constantly found to cope well with appearance varia-
tions of image scenes and object classes (Vedaldi et al. 2009;
Gehler and Nowozin 2009). However, the branch&rank par-
adigm is general and can also be implemented with other
classifiers (e.g., random forests, boosting, etc).

Section 4.1 introduces the ranking function and motivates
the idea of grouping hypothesis sets into multiple tasks. Sub-
sequently, Sect. 4.2 revisits a structured SVM formulation
dedicated to learning rankings. We then present a transfor-
mation of the problem in Sect. 4.3 that decomposes the train-
ing. The resulting optimisation problem is stated in Sect. 4.4.
Finally, Sect. 4.5 elucidates locally linear SVMs (Zhang et
al. 2011b) to speed-up the evaluation.

4.1 Multi-task Ranking Function

Bag-of-Words Appearance. Our ranking function builds
on the commonly used bag-of-words approach as it copes
well with image classification and object detection (Lazeb-
nik et al. 2006; Vedaldi et al. 2009; Lampert et al. 2009;
Lehmann et al. 2011b). This aggregates (local) features and

Fig. 4 Ranking Ambiguity. One large bounding-box left and a set of
many small bounding-boxes right can cover the same sub-image. Their
semantics is different though i.e., is the object localised top or does it
contain an object somewhere bottom. Therefore, a ranking function that
ignores the set size would have to predict two different ranks for the
same descriptor, which is impossible

T1
T3 T4

T2

Image Classification Task

Object Detection Task

mediate Tasks(Multiple) Inter

Fig. 5 Detecting an object in an image is decomposed into different
tasks. The approach smoothly blends from image classification (T1) to
object detection (T4). This allows for object localization with runtime
sub-linear in the number of candidate regions, often using less than 100
classifier evaluations

represents them by a histogram. Specifically, the appearance
descriptor φ(�) uses all features that fall within the bound-
ing box B(�) := ⋃

λ∈� B(λ) where the union extends the
notion of a bounding box to sets of hypotheses (c.f. Fig. 3).
For large sets, this actually includes all image features as
usual in image classification.

Appearance is Not Enough. Figure 4 illustrates a
degenerate case which suggest that the appearance within the
bounding-box union is not sufficient to properly rank a set. In
fact, using onlyφ(�)may lead to ambiguities that jeopardize
the ranking. In short, two sets with different labels can yield
the same bounding box union; thus the same appearance
descriptor. We address this problem with a multi-task frame-
work that connects image classification with object detection.

From Classification to Detection. Figure 4 sug-
gests that using one ranking function for all possible sets is
not sufficient. Let us consider the two extremes of such sets
that arise during the search (c.f. Fig. 5).

At one end, the initial set represents the entire image
and all possible sub-windows. Scoring this set is the task
of image classification. The other extreme is a hypothesis

123

258 Int J Comput Vis (2014) 106:252–268

set with only one instance, corresponding to scoring a sin-
gle bounding box. This is an object recognition problem.
Both of course are related, but note the difference in the
tasks: the first set should have a high score if it contains an
object, the latter if it is centered on the object. This suggests
that these tasks are better solved separately but combined
in a joint objective. For example the first task could bene-
fit from different image features such as the gist of a scene
(Oliva and Torralba 2001), while the latter could make use
of object specific features (Oliva and Torralba 2001; Dalal
and Triggs 2005; Lowe 2004) or spatial configurations of
object parts (Felzenszwalb et al. 2008). In our experiments
we did not take advantage of size dependent image repre-
sentations but focus more on the algorithmic properties of
the systems. Moreover, grouping related examples into tasks
reduces the intra-task variability, which simplifies the learn-
ing problem.

Multi- task Mapping. We capture the notion of tasks
by a mapping q(�) �→ {1, 2, . . . , T } which assigns a task
ID to any hypothesis set. This mapping builds on properties
other than a set’s appearance. In other words, the set pro-
vides valuable domain knowledge. For example, we can use
the number of bounding boxes contained in a set (i.e., its size
|�|) to differentiate between the classification and recog-
nition tasks. More specifically, our task mapping discretizes
log(|�|) uniformly into T different tasks; the log accounts for
the set size’s exponential decay (due to the splitting scheme).
This spans the continuum between image classification and
the final object recognition problem. While both extremes are
often dealt with separately (Griffin et al. 2007; Everingham
et al. 2007), we combine and complement them with inter-
mediate tasks. Unless stated otherwise, we will use T = 6
tasks. Let us stress that this is one particular choice, while the
concept of tasks is more general: we could define other map-
pings that group examples by scale and aspect-ratio (Park et
al. 2010; Zhang et al. 2011b), or also by class labels (Yeh et
al. 2009).

Ranking Function. Finally, we define the multi-task
ranking function as

f (�) = 〈wq(�), φ(�)〉 + bq(�) (4)

with per-task weight vectors wt and bias terms bt , where
t = q(�) designates the task of sample �. In a kernelized
form this relates to a product kernel 1Iq(�)=q(�′)φ(�)Tφ(�′)
with indicator function 1Ix (that is 1 if x is true and 0 oth-
erwise) when dualising the SVMs. The SVM optimisation
will eventually benefit from the per-task biases as they lead
to a decomposition that allows for training tasks in isola-
tion. For simplicity, we use the same appearance descriptors
for all tasks, although one could specifically tailor them to
the individual tasks possibly making use of different fea-
tures.

4.2 Structured SVM Ranking

Several ranking problems have been studied in the machine
learning literature (Tsochantaridis et al. 2005; Chapelle and
Keerthi 2009; Burges et al. 2005) and we adopt structured
SVMs using margin-rescaling (Tsochantaridis et al. 2005).

We briefly revisit the optimisation problem and refer to
the original paper for details. In this framework, the ranking
condition from the previous section translates to the optimi-
sation problem

min
f,ξ≥0

‖ f ‖2 + C
n∑

j=1

ξ j (5)

s.t. f (�+
j)− f (�) ≥ �(�+

j ,�)− ξ j

∀�+
j ∈L

+, ∀�∈L\L
+

with slack variables ξ j for every positively annotated exam-
ple {�+

j }n
j=1 and regularisation parameter C , that trades data

fit for model complexity (‖ f ‖2 = ∑T
t=1 ‖w‖2). The loss

�(�1,�2) �→ R encodes the cost of predicting �2 if �1

were correct. As we deal with object class detection (where
specific instances are not distinguished), we need to properly
handle the case of multiple objects in an image: detecting an
object λ+

1 instead of object λ+
2 should not incur any loss, i.e.,

�(λ+
1 , λ

+
2) = 0 (and similar for sets �+). In other words,

the loss depends on all annotations Y .
We adopt and extend the loss introduced in (Blaschko

and Lampert 2008). They defines the loss of a bounding box
proportional to its overlap with the ground truth; high overlap
means small loss and vice versa. We extend this loss to sets
by defining the overlap of hypothesis sets as

max O L(�,Y) = max
λi ∈Y

max
λ∈� ol(λ, λi) (6)

with ol as defined in Eq. (2); this uses the maximal rather than
the minimal overlap in Eq. (3). Hence, max O L is high if one
instance (of the set�) has high overlap with any of the ground
truth objects and 0 if there is no instance with any overlap.
Finally, we define the loss as �(�) := �(�+

j ,�) = 1 −
max O L(�,Y) which exploits the fact that during training
the first argument is always a positive example. The latter
yields the “1−” term which could otherwise be a “max” term
similar to the second one. Note that this loss is identical to
(Blaschko and Lampert 2008) if there were no sets (in Eq.
(5)), but only single bounding boxes.

4.3 Problem Decomposition

The multi-task ranking function from the previous subsection
allows for a decomposition of the SVM optimisation prob-
lem. This reduces the complexity since each of the resulting
problems involves only a subset of the data. This Subsection

123

Int J Comput Vis (2014) 106:252–268 259

Fig. 6 Constraints of the decoupled structured SVM as in Eq. (7). The
classifier/ranking-function f dashed line is constrained to be below
the shaded region. The slack variables ξi act like springs and force the
positive examples �+

i to have a higher rank

details the two necessary steps to accomplish this decompo-
sition.

Step 1: Constraint Decoupling. We exploit the spe-
cial structure of our loss function to break the pairwise
dependencies in Eq. (5).2 More specifically, we rewrite
the constraint set from f (�+

j) − f (�) ≥ �(�) − ξ j to

f (�+
j) + ξ j ≥ f (�) + �(�) which, of course, must still

hold ∀�+
j ∈ L

+, ∀� ∈ L\ L
+. The main observation is

that each side now involves only � or �+
j . Moreover, each

side provides a lower/upper bound for the other. To be pre-
cise, there exists a value b for which f (�+

j) + ξ j ≥ b and
b ≥ f (�)+�(�). We therefore obtain an equivalent opti-
misation problem

min
f,ξ≥0,b

‖ f ‖2 + C
n∑

j=1

ξ j ,

s.t. f (�+
j)+ ξ j ≥b

b ≥ f (�)+�(�)

∀�+
j ∈L

+
∀�∈L\L

+

(7)

that explicitly optimises over the value b of these upper/lower
bounds. This step transformed the pairwise constraints from
the initial problem into constraints which only depend on
one element. This resembles much the problem of binary
SVMs, except that the constraints for negative examples are
not allowed any slack. A visualisation of the decoupled con-
straints is given in Fig. 6. Let us emphasise that the feasible
set of Eqs. 5 and 7 are identical. The latter is however advan-
tageous as it involves much fewer constraints: it has n + m
constraints (with n = |L+| and m = |L\L+|) while the origi-
nal problem had n×m. In summary, the decoupling simplifies
the description of the feasible set, but without changing the
optimal solution.

Step 2: Task Decomposition. This second step bene-
fits from the multi-task function Eq. (4) that includes per-task
bias terms. Substituting Eq. (4) into the optimisation problem
Eq. (7) yields

2 More generally, this transformation is possible whenever the loss is
separable in its two arguments, i.e., �(�+,�) = u(�+) − v(�) for
some functions u and v.

min
{wt ,bt }t=1...T

ξ≥0,b

∑

t

‖wt‖2 + C
∑

j

ξ j subject to

{ 〈wq(�+
j)
, φ(�+

j)〉 + bq(�+
j)

≥ b − ξ j ∀�+
j ∈L

+

〈wq(�), φ(�)〉 + bq(�) ≤ b −�(�) ∀�∈L\L+

(8)

which can be almost decomposed: solely the variable b
induces a coupling between the tasks. We further observe
that the constraints depend only on the differences bt − b.
Therefore, adding a fixed constant to all bt and b does not
affect the solution. In other words, the problem is under-
constrained and we choose the additional constraint b = 1 to
make the optimal solution unique. This eliminates the inter-
task coupling and it remains to group all constraints and all
summands of the objective by their task ID.

Doing so reveals the final optimisation problems that we
state in the following section. Let us point out that we did not
alter the constraint set that enforces the ranking condition (1).

4.4 Decomposed SVMs and Training

This section states the final optimisation problem and dis-
cusses the training procedure. The preceding subsections
detailed the SVM setup, multi-task consideration, and a trans-
formation which led to a decomposition of the problem. This
enables us to learn each task separately: the optimal per-task
parameter pair (wt , bt) is obtained by solving smaller opti-
misation problems

min
wt ,bt ,ξ≥0

‖wt‖2 + C
∑

j

ξ j subject to

〈wt , φ(�
+
j)〉 + bt ≥ 1 − ξ j

〈wt , φ(�)〉 + bt ≤ 1 −�(�)

∀�+
j ∈L

+,
∀�∈L\L+,

q(�+
j)= t

q(�)= t

(9)

that use only examples from one given task t .
Although this objective function based on the aforemen-

tioned decompositions does allow for separate training, it
does not mean that the functions 〈wt , ·〉 are independent.
The problem Eq. (9) is indeed equivalent to Eq. (5) when
using f as in Eq. (4). This also results in the scores being
calibrated, the same regularization and loss rescaled margin
is being used for all of them. In some sense this is only pos-
sible because ranking is enforced between two sets where
one does contain at least one correct hypothesis. This allows
for the constraint decoupling described above. There is no
distinguishing between two different sets that do not con-
tain correct hypotheses nor two sets that both do. It would
be conceivable to rank smaller sets higher than larger sets
which would break this decomposition. This problem can
be readily kernelized and we choose to work with the RBF-

χ2-kernel 〈x, z〉k = k(x, z) = exp
(
−γ ∑

l
(xl−zl)

2

xl+zl

)
as an

example. As bandwidth γ , we use the inverse of the kernel
matrix’s median.

123

260 Int J Comput Vis (2014) 106:252–268

Constraint Generation. We solve Eq. (9) using
SVMstruct (Tsochantaridis et al. 2005) and delayed con-
straint generation since the constraint set is huge; it consists
of all sets of bounding boxes. We initially generate the pos-
itive constraints by running Algorithm 1 using the ground
truth ranking f GT (�) := 1I�∩Y �=∅; let us emphasise that
branch&rank uses exactly the same annotation as any other
detection approach. Thereafter, we alternate between opti-
mising Eq. (9) with the reduced constraint set, and gathering
new examples that violate the constraints. We identify new
constraints by running a detector that uses the current esti-
mate of the loss-augmented score f L A(�) := f (�)+�(�),
and subsequently add them to the constraint set. More pre-
cisely, in our implementation we perform 10 rounds in each
of which we generate new constraints from 300 randomly
chosen training images.

Hard Negative Mining. The newly gathered examples
are in fact those that are easily confused with positive ones.
They are often called hard negatives and delayed constraint
generation thus provides a formal justification to the com-
monly used “hard negative mining” (Dalal and Triggs 2005).
This connection was first demonstrated by Blaschko and
Lampert (2008) and their extension (Blaschko et al. 2010)
addressed the problem of pair-wise constraints in Eq. (5).
Our decomposition in Sect. 4.3 breaks the pair-wise cou-
pling and the resulting optimisation problem Eq. (9) makes
the connection to the binary SVM setup more explicit. But
recall, Eqs. (7–9) are equivalent to the well establish ranking
formulation Eq. (5).

4.5 Linearization: Anchor Plane SVMs

We further experiment with locally linear SVMs (Ladický
and Torr 2011; Zhang et al. 2011a) to speed-up the evaluation
of various detector configurations. The evaluation time of
non-linear SVMs scales in the number of support-vectors,
which tends to grow linearly with the training data size. This
is a downside especially since more training data often leads
to better classifiers. Consequently, non-linear SVMs become
slower as they become better. A possibility to overcome the
computational bottleneck is to work with locally linear SVMs
(Ladický and Torr 2011; Zhang et al. 2011a). The rationale
is that linear SVM are often too simplistic while non-linear
SVMs are too expensive to evaluate; locally linear SVMs
aim for combining the advantages of both by assuming that
the decision boundary is locally linear. In essence, a local-
linear SVM is a linear SVM after mapping each feature x to
ψ(x) = x ⊗ γ (x) with a local coordinate coding function
γ : x �→ RD; the parameter D increases the capacity of the
classifier by expanding the original descriptor x ∈ RN to
N · D dimensions. This actually induces a kernel k(x, z) =
(xT z) · (γ (x)T γ (z)) that compares only examples that have
similar mappings.

y

y
x x

Image Truncated to Hypotheses Set

Hyphothesis

Hyphotheses Set Λ

λ

Fig. 7 A hypothesis set white with 5 of its elements yellow. These are
fixed aspect-ratio/scale bounding boxes whose center dots are within a
fixed interval. All features that fall into the hypothesis set’s bounding
box blue are used to compute a bag-of-word descriptor for � (Color
figure online)

In particular we adopt the anchor plane SVMs (Zhang et
al. 2011a) that use an orthogonal coding function

γ (x) = v/‖v‖1 with v = Cx (10)

with anchor planes defined by a matrix C ∈ RD×N where N
denotes the dimensionality of the feature vector x . The anchor
planes are found as the dominant eigenvectors of the training-
data feature vectors and are found with the singular value
decomposition; for details see (Zhang et al. 2011a). In fact,
v relates to a PCA approximation of the example x , except
that the data mean is not subtracted. Our experiments show
that D = 20 anchor planes boost the performance compared
to linear SVMs. Moreover, the overall evaluation is much
faster than non-linear SVMs, in particular, independent of
the training data size.

5 Hypothesis Set Representation

This section details the representation of hypothesis sets and
we describe how to implement the operations required by
the detection algorithm. The overall procedure to represent
hypothesis sets is as follows. First, we parametrize bounding
boxes using a four dimensional vector. In Sects. 5.1 and 5.2
we work with a reference point plus the box’s scale&aspect-
ratio, while in Sect. 5.3 the width&height is used instead.
Secondly, we obtain sets of bounding boxes by representing
each dimension with an interval, rather than a single number.
This provides a compact description of sets as illustrated in
Fig. 7. The remainder of this section details the representa-
tions and set splitting, as well as how to compute the set size
and union bounding box.

5.1 Position, Scale, and Aspect-Ratio

Representation & Initialisation. Our first implemen-
tation represents a bounding box by its center (x, y), scale

123

Int J Comput Vis (2014) 106:252–268 261

s, and aspect-ratio r . Using (s, r) rather than the box’s
width/height w, h has the property that it allows to directly
control the aspect-ratio of detectable objects. Moreover,
encoding scale explicitly relates to the scale-space pyramid
as used in many sliding-window systems. More precisely,
we work with ls := log

√
wh and lr := log

√
w/h where

the logarithm accounts for the multiplicative nature of the
two quantities. Following the overall procedure we repre-
sent hypothesis sets as � = [x, x] × [y, y] × [ls, ls] ×
[lr , lr] which comprises all bounding boxes with center
(x, y) ∈ [x, x]×[y, y], and scale/aspect-ratio in the intervals

s ∈ [exp(ls), exp(ls)] and r ∈ [exp(2lr), exp(2lr)], respec-
tively. In summary, a single bounding box is represented by
a point while sets correspond to hypercubes as illustrated in
Fig. 7. The search space �0(I) for image I of dimensions
W × H is

[0,W] × [0, H] × [log smin, log
√

W H]
×

[
log rmin

2
,

log rmax

2

]

where we estimate the aspect-ratio extremes rmin,max from
the training data, and set the lower scale limit to smin = 50
pixels.3

Bounding Box & Set Size. We start by computing a
the widest/tallest bounding box of a set, i.e.,wmax = exp(ls+
la) and hmax = exp(ls − lr), respectively. Hence, the rectan-

gle B(�) =
[
x − wmax

2 , y − hmax
2 , x + wmax

2 , y + hmax
2

]
cov-

ers all bounding boxes of a given set. Moreover, we define
the cardinality of a set as the product of its per-dimension
interval sizes (i.e., the upper minus the lower limit). More
precisely, we define

|�| = (x − x)

s

(y − y)

s
(ls − ls)(lr − lr) (11)

where we normalize the spatial intervals by the smallest scale
of the set s = exp(ls). This ensures scale-invariance as we
measure the spatial intervals relative to the object size; we
choose the smallest scale since small-scale bounding boxes
dominate the size of a set.

Splitting. We implement the splitting scheme as follows.
The largest of all four intervals (defining a set) is split into two
equals halves. For this we normalize the size of the spatial
(xy) intervals using the largest scale s. This scale-adaptation
avoids localising objects with unnecessary high precision:
xy-intervals may already be small w.r.t. the largest bounding
box of a set; therefore we prefer splitting along ls, lr over
spatial splits.

3 Our visual-words based image descriptors seems inadequate for scales
<50 pixels; unfortunately, this yields an a priori loss of recall. This is a
problem of the feature representation, not of the detector.

Fig. 8 Bounding boxes fully within an image form a triangle in x − s
parameter space, while the interval set description leads to rectangles.
The shrinkage step adjusts interval limits of�2 to describe the smallest
enclosing rectangle�2s ;�1 remains the same. This suppresses bound-
ing boxes partially outside the image

5.2 Including Set Shrinkage

Next we describe a parameterisation that is largely equal
to the one described above, but includes a shrinkage step.
The previous parameterisation allowed bounding boxes that
can be partially outside the image. Although these bounding
boxes are generally low-scoring (due to fewer supporting
features), one may want to eliminate them explicitly.

Representation & Initialisation as in Sect. 5.1.
Constraints & Shrinkage. We apply a shrinkage step

to enforce additional constraints on the bounding boxes.
Thereby we can ensure that e.g.bounding boxes partially out-
side the image get eliminated. One constraint is that the box
widthwmust be smaller than the image width W . Moreover,
the object center x of larger objects have to be farther away
from the image border. This yields the constraints w < W
and w/2 ≤ x ≤ W − w/2 (similar for y, h, H) which can
also be expressed in terms of ls, lr . The shrinkage step uses
these constraints to adjust the interval limits as shown in
Fig. 8. The update has to be conservative in order not to
lose any bounding box that is fully within the image. For
example, the constraint ls − lr < log H yields new scale
upper limit min(ls, log W − lr) and aspect-ratio lower limit
max(lr , ls−log H). Similarly for other constraints we obtain
the shrinkage rules:

x = max(x, wmin/2) x = min(x,W − wmin/2) (12)

y = max(y, hmin/2) y = min(y, H − hmin/2) (13)

lr = max(lr , ls − log H) lr = min(lr , log W − ls) (14)

ls = min(ls, log H + lr , log W − lr) (15)

with wmin = exp(ls + lr) and hmin = exp(ls − lr). Finally,
sets with interchanged interval limits (e.g., x > x) are empty
and get eliminated.

Bounding Box & Set Size. This shrinkage procedure
is applied after every set splitting and ensures bounding boxes
(partially) outside the image are excluded from the search.
Consequently, the union of bounding boxes as computed pre-

123

262 Int J Comput Vis (2014) 106:252–268

Fig. 9 A set of fixed scale and
variable aspect-ratio bounding
boxes solid. Its union bounding
box dashed covers pixels grey
not part of any single box; that
might challenge a detector

viously can be clamped to the image domain. The size of a
(shrinked) set is computed as before in Sect. 5.1.

Splitting. Equations (12, 13) show that the spatial inter-
vals depend on the size of the bounding box: the larger
the bounding box the smaller the interval. As the splitting
procedure relies on the interval size relative to the largest
bounding box we also account for the shrinkage when choos-
ing the split dimension. For example, the the x-interval size
becomes (min(x,W − wmax/2) − max(x, wmax/2))/wmax

with wmax = exp(ls + lr).

5.3 Position, Width, and Height

Representation & Initialisation. The argument for the
previous representation was to control the aspect-ratio upon
initialisation, but we found that additional constraints need
still to be enforced. Moreover, the bounding box union can
cover pixels not part of any bounding box which seems inap-
propriate (Fig. 9). Using scale&aspect-ratio explicitly thus
provides no real advantage; we now represent a bounding
box by its center (x, y), width w, and height h, and control
the aspect-ratio using the shrinkage step. The set description
results from extending all four coordinates to intervals

� = [x, x] × [y, y] × [w,w] × [h, h] (16)

and the search space for an W × H image is

�0(I) = [0,W] × [0, H] × [smin,W] × [smin, H] (17)

where we again choose smin = 50 pixels.
Constraints & Shrinkage. We derive the shrinkage

rules as before, but need to enforce different constraints. In
particular, we have to ensure that rmin ≤ w/h ≤ rmax and
w/2 ≤ x ≤ W −w/2 (similar for y). The constraintsw < W
and h < H always hold. The shrinkage rule thus becomes

x = max(x, w/2) x = min(x,W − w/2) (18)

y = max(y, h/2) y = min(y, H − h/2) (19)

w = max(w, rminh) w = min(w, rmaxh) (20)

h = max(h, w/rmax) h = min(h, w/rmin). (21)

Bounding Box & Set Size. The union of bounding
boxes is simply B(�) = [x−w/2, y−h/2, x+w/2, y+h/2]
as the representation stores the maximal width/height. As we

apply the shrinkage, we can clamp this bounding box to the
image domain. Furthermore, we define the set size as the
product of its intervals, i.e.,

|�| = (x − x)

w

(y − y)

h

(w − w)

w

(h − h)

h
, (22)

where all interval sizes are measured relative to the objects
size. This ensures scale-invariance while we again normalise
w.r.t. to the smallest scale-objects (which dominate the size
of a set).

Splitting: Binary&Quadruple Splits. For splitting,
we compute the scale-normalised interval sizes (y, h ana-
logue)

min(W − w/2, x)− max(w/2, x)

w

w − w

w
(23)

where the normalisation is relative to the largest-scale
objects. We also account for the (potential) shrinkage at that
scale which favoursw over x splits to avoid too fine a localisa-
tion of large objects (as motivated in Sect. 5.1). This represen-
tation does not couple horizontal and vertical dimensions and
we thus experiment to split them both simultaneously. That
is, instead of splitting always one interval, we also split pairs
(x, y) or (w, h) simultaneously; this results in four subsets
rather than two. As always, a pair with the smallest interval
size is split.

6 Experiments

This section evaluates the performance of branch&rank. All
details of the evaluation, the pre-processing steps like image
feature extraction are described in Sect. 6.1. Then, individ-
ual components are analysed in the following sections. We
analyse in isolation the classifier (Sect. 6.2), the parametrisa-
tion (Sect. 6.3), and the task quantisation (Sect. 6.4). Finally
the overall performance (Sect. 6.5) and the efficiency (Sect.
6.6) of the resulting branch&rank detector are evaluated.

6.1 Testbed and Features

Testbed. We use the VOC’07 dataset (Everingham et al.
2007) as a testbed for the experiments, it consists of about
10 k images with 20 classes and comes with three pre-defined
splits “train”, “val”, and “test”. We compare different con-
figurations of the branch&rank detector on a subset of 10
classes, while the final (test-set) evaluation and compari-
son to published results is done for all classes. The eval-
uation scheme is as follows: the parameter C is estimated
by training (validating) models on the train (val) data splits.
As images are selected randomly during hard negative min-
ing, we always average over three different runs; the variation

123

Int J Comput Vis (2014) 106:252–268 263

Fig. 10 Detection with anchor plane SVMs. As expected, more anchor
planes improves results and outperforms linear SVMs (D = 1). We
choose D = 20 for a good trade-off between average precision and
computation

among runs is plotted with error bars. Using the best C value,
we eventually retrain on the entire ’trainval’ split and evaluate
on the test data. For training, we ignore images that contain
truncated or difficult examples. Moreover, we use only 1,000
negative images during validation. Throughout, we measure
detection quality using average precision of VOC’10, unless
stated otherwise.

RGB- SIFT- Pyramid- Features. We extract features on
a dense grid at multiple scales. We use the code of van de
Sande et al. (2010) and select rgb-SIFT descriptors. This typ-
ically results in about 15k features that we quantise using a
vocabulary of 100 visual words using k-means clustering.
Subsequently, we apply a spatial pyramid histogram scheme
with 1 × 1, 2 × 2, and 4 × 4 bins that yields a 2100D sub-
image descriptor φ(�) for a set�. In fact, we further apply a
normalisation where we compare two versions. One version
is to normalise the vector by its l2-norm. The second to apply
term frequency reweighing as common in retrieval (Robert-
son and Walker 1994). Specifically, we rescale every feature
x by x/(x + a) where we found a = 7 to work well. This
relates to binarisation/max-pooling (Boureau et al. 2010) as
each feature saturates at 1, but it does so in a smooth fashion.
Results obtained by this normalisation are denoted by a TF
suffix.

6.2 Comparison of Kernels

The first experiment validates the quality of different kernel
functions. In particular, we elucidate the quality of the anchor
plane SVMs compared to common non-linear SVMs. Fur-
thermore, we investigate the difference between the RBF-χ2

and a standard Gaussian kernel. The latter uses the Euclidean
distance to compare feature vectors.In this section and also

Fig. 11 Detection results with varying kernel functions. The RBF-χ2

kernel performs best. Taking computation into account, anchor plane
SVMs with term frequency (TF) reweighing are competitive: they are a
bit worse, but they are an order of magnitude faster. See text for details

Sects 6.3 and 6.4 we use the “train” split for training and
“val” for performance evaluation of the model.

First of all, Fig. 10 summarises the performance of the
anchor plane SVMs using a varying number of planes D;
note that the case D = 1 is simply a linear SVM. The plot
indicates that increasing the dimensionality indeed improves
the average precision of the system but levels off at about
D = 20 − 50. Using locally linear SVMs with D=50 anchor
planes yields a mean average precision of 21.9 % as opposed
to 17.0 % in case of linear SVMs. As computation time and
storage requirements scale linearly with the dimensionality,
we prefer fewer dimensions. Therefore, we fix D = 20 in
all subsequent experiments as this choice provides a good
trade-off between speed and quality (i.e., mAP = 21.4 %).

Next we study the performance of a variety of kernel
functions. We compare the Gaussian kernel and the RBF-
χ2 kernel, both with l2 or term-frequency (TF) reweighing.
Moreover, we also compare with anchor plane SVMs that
apply the TF reweighing. The results are displayed in Fig.
11. We observe that the RBF-χ2 kernel with l2 reweighing
(RBF-χ2-TF) yields best performance (mAP = 24.6 %); this
finding is in line with results in the literature (Gehler and
Nowozin 2009). Moreover, we see that the Gaussian kernel
is competitive when using the term frequency reweighing
(Gauss-TF yields mAP= 23.9 %), while the Euclidean dis-
tance is not appropriate for the raw feature counts (Gauss
yields mAP=17.2 %). We thus conclude that a re-weighting
scheme such as TF or an adaption of the distance measure,
e.g. using χ2 distance, provides better results.

While the performance decreases a bit, the pay-off from
locally-linear SVMs become apparent when looking at the
computation and storage requirements. We report numbers
for car as an exemplary example. The entire evaluation
(including training, hard-negative mining, and testing on the

123

264 Int J Comput Vis (2014) 106:252–268

Fig. 12 Search space partitioning schemes. We parametrise objects
by their center and scale&aspect-ratio (ls/lr) or width&height (w/h),
respectively. Moreover, all but the first variant include a shrinkage step
to control the aspect-ratio and to ensure that bounding boxes are fully
within the image. Width&height parametrisation yields the best results
in particular with quadruple splits

validation set) takes roughly 25 min for an anchor plane
(D = 20) SVM, compared to 250 min for the RBF-χ2 classi-
fier. This is one order of magnitude less runtime. In terms of
storage, the models are 10MB and 66MB large, respectively.
Hence, measuring performance not only in terms of “average
precision” makes anchor plane SVMs competitive.

In conclusion, the RBF-χ2 kernel yields best accuracy
(24.6 %), while anchor plane SVMs have strong compu-
tational advantages with only minor decrease in accuracy
(21.4 %). In the sequel, we therefore compare various detec-
tor configurations (i.e., different search space partitioning
schemes, increasingly many tasks) using the much faster
anchor plane SVMs. However, the final evaluation and com-
parison to published results is done using the more accurate
RBF-χ2 kernel.

6.3 Search Space Partitioning Schemes

Section 5 described several search space partitioning schemes
that we now compare in terms of AP using anchor plane
SVMs. Recall, there are two different parametrisation based
on width&height (w/h) and scale&aspect-ratio (ls/lr), respec-
tively. For the latter, we either explicitly suppress bounding-
boxes (partially) outside the image (using a shrinkage step)
or assume that these boxes generally have a low score (due
to the lack of features). The width&height parametrisation
always includes the shrinkage step (to control an object’s
aspect-ratio), but we experiment with binary or quadruple
splits. The results are reported in Fig. 12 and indicate that
the width&height parametrisation is slightly better than using
scale&aspect-ratio. The reason might be that the sub-image
that covers all bounding boxes of a set is usually more com-

Fig. 13 Multi-Task Ranking: Grouping sets into multiple tasks outper-
forms the monolithic approach (T=1) significantly. The mean average
precision suggest T=6 to be a good choice

pact (due to the problems illustrated in Fig. 9). At first sight,
splitting into four subsets seems slightly superior, but this
is mainly due to the result on bicycle. Looking at the other
classes, the two variants perform similar. As we think it is
adequate to simultaneously partition horizontal (i.e., x, w)
and vertical (y, h) axis intervals, we subsequently work with
the quadruple split approach. Moreover, this splitting gave
the best accuracy (22.2 %).

6.4 Multi-task Improvements

This experiment investigates the benefit of our multi-task
framework as proposed in Sect. 4.1. The supposition is that
the visual appearance within the union of bounding boxes is
not sufficient to properly rank a hypothesis set. Therefore, we
argue that grouping sets into tasks should increase the detec-
tion quality. The effect of using T ∈ {1, 2, 4, 6, 8, 10} tasks
is reported in Fig. 13. Our supposition holds that a holistic
detector without any task decomposition (T=1) performs
worse (16.5 %). The best performance is attained with T=6
tasks (22.2 %) while too fine a quantisation (i.e., T = 10) dete-
riorates slightly (21.3 %). This is also expected as the number
of (per-task) training examples decreases. In summary, the
transition from the initial image classification to the even-
tual object recognition task is well covered with T=6 tasks.
This yields a smooth transition and increases performance
w.r.t.the holistic T=1 ranker by about 6 %. We thus con-
clude that the decomposition into different tasks is necessary
for reasonable performance.

6.5 Performance Evaluation

Finally, we evaluate the detector on the VOC’2007 testset and
use the ’trainval’ split for training. The detector distinguishes

123

Int J Comput Vis (2014) 106:252–268 265

Fig. 14 Comparison of RBF-χ2-kernel with anchor plane SVMs on
the testset (trained with trainval subset). The true non-linearity of the
former yields better average precision results. The latter is 4.5 % worse,
but it is about 10 times faster

six tasks and uses the width&height parametrisation with
quadruple splits. Figure 14 reports the results of the anchor
plane SVM with 20 planes and the non-linear RBF-χ2-SVM.
The RBF-χ2 SVM clearly outperforms anchor plane SVMs
in terms of average precision; recall that anchor plane SVMs
are an order of magnitude faster.

Next we compare the performance of branch&rank with
a state-of-the-art detector (Felzenszwalb et al. 2008) (dt) as
well as the best (per category) results reported in the chal-
lenge (Everingham et al. 2007) (v7).4 In order to compare
results with the published results (Felzenszwalb et al. 2008;
Everingham et al. 2007), we use the original VOC’07 AP
measure which has a sampling artefact5; the previous results
were reported using the newer VOC’10 AP measure that
resolved this issue. Table 2 shows that our scores are some-
times higher (horse, sofa), lower (e.g.bicyc, bus, car), or in
between (e.g.aeroplane, cat, motorbike, train). This is the
ranking we have expected using only one single un-tuned
image descriptor. Looking at the results of other contestants
(not only the per-class winners) we found that our scores
are in a similar range and conclude that for certain categories
(e.g., bottle, person) a combination of multiple diverse image
descriptors is vital to achieve even higher accuracy. In fact,
(Vedaldi et al. 2009) convincingly demonstrated that combin-
ing multiple complementary features significantly improves
detection quality. A comparison to (Vedaldi et al. 2009) is out
of the scope of this paper as we use only one single feature.
Our aim is to improve detection efficiency and the algorith-

4 We cannot directly compare to Lampert (2010) as they evaluate using
recall-overlap rather than average precision
5 Due to measuring the performance at a discrete set of recall values,
an AP of 1/11 ≈ 9 % is obtained if the best-scoring detection is correct
even if it is the only one.

mic properties can well be demonstrated with a single image
descriptor. The next section will demonstrates the efficiency
of branch&rank.

6.6 Efficiency: often less than 100 classifier calls

We measure the efficiency of the proposed detector in terms
of number of classifier evaluations as opposed to runtime
in seconds. The latter is certainly of practical interest and
we partially addressed this topic with the anchor plane SVM
experiments. However, this work focuses on efficiency where
we aim for algorithms that scale sub-linearly in the number
of hypotheses (c.f. Fig. 1). In Fig. 15 the number of iterations
(of Algorithm 1) till a detection is plotted (as a function of
the detection score) and the average number of iterations
(at precision equals recall) is reported in the legends. Our
system detects most objects quickly: the averaged number
of iteration at precision=recall is about 30 iterations (that is
4 × 30=120 classifier calls) while the high scoring detection
are found even quicker. This finding reinforces our conjecture
from Sect. 3.5: a better ranking improves detection efficiency.
For comparison, ESS (Lampert et al. 2009) reports on the
order of 10 k iterations, while Vedaldi et al. (2009) score 100
boxes in the last non-linear stage (thus on top of the early
cascade evaluations). In conclusion, our method is efficient
making it possible to solely use non-linear SVMs. Runtime is
affected by the classifier evaluation and the number of times
it is called. On the class car detection with the non-linear χ2

kernel SVMs took around 8.5 s per image, the local linear
classifier runs at 0.5 s per image.

7 Conclusion

In short, branch&rank (Lehmann et al. 2011a) generalises
the idea of branch&bound (Lampert et al. 2009; Lehmann et
al. 2011b): ranking improves efficiency and thereby enables
the use of arbitrary classifiers, including non-linear SVMs
with RBF-χ2 kernels. This is a crucial advance in efficient
object detection since strong classifiers are beneficial to prop-
erly model the object intra-class variations. Let us recapitu-
late, the efficiency of our method results from leveraging the
branching step of branch&bound, but superseding the bound-
ing by a ranking step. This relieves the former limitations
(availability of a tight bounding function) and allows for arbi-
trary ranking functions. The system is trained in a structured
SVM setting while a multi-task formulation has proven effec-
tive: it properly handles image classification, object recogni-
tion, and in-between task arising throughout the search pro-
cedure. The experiments show that branch&rank localises
objects using often less than 100 classifier calls. This effi-
ciency enables costly and thus strong classifiers.

123

266 Int J Comput Vis (2014) 106:252–268

Table 2 Average precision (AP) on the VOC 2007 testset; detectors are trained with the ’trainval’ and evaluated on the ’test’ datasplit

Aerop Bicyc Bird Boat Bottle Bus Car Cat Chair Cow Dtable Dog Horse Mbike Person Plant Sheep Sofa Train Tv

Anchor 14.3 21.9 1.7 3.4 1.3 29.0 28.5 9.9 1.2 7.1 3.0 7.3 31.9 28.4 5.7 0.5 7.9 13.3 25.6 17.0
AP10 Plane

RBF-χ2 17.5 24.8 3.7 6.6 2.1 29.9 31.9 14.3 1.8 9.5 5.4 12.6 40.1 32.2 7.3 2.1 11.4 19.4 30.4 24.0

RBF-χ2 20.6 26.9 9.5 11.4 8.1 32.0 32.5 17.3 6.8 12.9 10.5 15.9 41.5 33.8 13.4 8.4 14.5 23.2 32.1 26.5

AP07 v7 18.0 41.1 9.2 9.8 24.9 34.9 39.6 11.0 15.5 16.5 11.0 6.2 30.1 33.7 26.7 14.0 14.1 15.6 20.6 33.6

dt 26.2 40.9 9.8 9.4 21.4 39.3 43.2 24.0 12.8 14.0 9.8 16.2 33.5 37.5 22.1 12.0 17.5 14.7 33.4 28.9

The top two rows show AP scores using the new (2010) AP implementation; the non-linear RBF-χ2-SVMs performs about 3.5 % better than
the faster anchor plane SVMs. The bottom three rows use the old 2007 AP score to allow for comparing branch&rank with a state-of-the-art
detector (Felzenszwalb et al. 2008) (dt) as well as the best (per category) results reported in the challenge (Everingham et al. 2007) (v7). (Note that
rows 2&3 differ only in terms of AP score implementation.)

Fig. 15 Detection efficiency: iterations till detection versus object
detection score. The heat map represents the joint (score-iterations)
density from all detections reported on the VOC’07 testset; bright indi-
cates high density. The blue circles denotes the true positive detections

only and the cyan line shows the cumulative average number of itera-
tions. Branch&rank uses on average less than 60 iterations, about 30 at
precision=recall, and sometimes only about 10 (Color figure online)

A novel aspect of branch&rank is that the notion of sets
is already integrated into the training. The ranking function
can therefore leverage information of a set which is not avail-
able when looking at a single bounding box. This allows to
overcome a systematic bias (towards larger sets) of bounding
functions (c.f. Lehmann 2011) and thus improves efficiency.
As a result, we made detection by non-linear SVMs feasible,
without the need for approximations.

Let us emphasise that efficiency is orthogonal to reducing
the cost of a classifier. Using faster classifiers will eventually

reduce the overall runtime as we showed with anchor plane
SVMs. While those performed a bit worse, they run an order
of magnitude faster. This enables to combine multiple com-
plementary features, which are the source of most empirical
progress in image classification and detection (Gehler and
Nowozin 2009; Vedaldi et al. 2009). This is subject to future
work while we found a single feature sufficient to demon-
strate the algorithmic properties of branch&rank.

Multi-task aspects play a vital role in branch&rank:
hypothesis sets throughout the search process correspond to

123

Int J Comput Vis (2014) 106:252–268 267

image classification, object categorisation, and in-between
tasks. We captured this phenomenon by a task mapping that
groups related sets; each task is scored with a dedicated func-
tion that still targets a global ranking. This concept is versatile
and our grouping (based on the set size) only scratched the
surface of what is possible. For example, (Park et al. 2010;
Zhang et al. 2011b) group by scale (and aspect-ratio) to better
cope with small, low-resolution objects. Our task mapping
describes such grouping in a formal, yet simple and general
manner.

In the future, we plan to better leverage the power of this
task mapping. The flexibility of branch&rank in fact allows
to use different appearance descriptors for different tasks,
and to sample features on demand. The next step is thus to
take advantage of findings from the image classification and
object categorisation community. We envision to improve the
detection results by tailoring the ranking function for each
task separately. Furthermore, it would also be interesting to
automatically learn a task mapping from training data.

Another upcoming research challenge lies in developing
a better understanding of hypothesis sets and how to par-
tition them. Our current bi/quad-section scheme is simple
yet effective, but it is not directly applicable to e.g., multi-
class scenarios. However, we anticipate that the proposed
multi-task approach extends to multi-class branching e.g.,
(Yeh et al. 2009). Designing an appropriate splitting scheme
that interleaves spatial and class branching is a promising
endeavour: extending branch&rank will provide a principled
and efficient true multi-class detector.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

Alexe, B., Deselaers, T., & Ferrari, V. (2010). What is an object?. In
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition.

Bileschi, S., & Wolf, L. (2005). A unified system for object detection,
texture recognition and context analysis based on the standard model
feature set. In Proceedings of the British Machine Vision Conference.

Blaschko, M. B. (2011). Branch and bound strategies for non-maximal
suppression in object detection. In Energy Minimazation Methods in
Computer Vision and Pattern Recognition.

Blaschko, M. B., & Lampert, C. H. (2008). Learning to localize objects
with structured output regression. In European Conference on Com-
puter Vision.

Blaschko, M. B., & Lampert, C. H. (2009). Object localization with
global and local context kernels. In Proceedings of the British
Machine Vision Conference.

Blaschko, M. B., Vedaldi, A., & Zisserman, A. (2010). Simultaneous
object detection and ranking with weak supervision. In Advances in
Neural Information Processing Systems.

Bottou, L., & Bousquet, O. (2008). The tradeoffs of large scale learning.
In Proceedings of the Advances in Neural Information Processing
Systems.

Boureau, Y. L., Ponce, J., & LeCun, Y. (2010). A theoretical analysis
of feature pooling in vision algorithms. In International Conference
on Machine Learning.

Breuel, T. M. (2002). A comparison of search strategies for geometric
branch and bound algorithms. In European Conference on Computer
Vision.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamil-
ton, N., et al. (2005). Learning to rank using gradient descent. In
International Conference on Machine Learning.

Carreira, J., & Sminchisescu, C. (2010). Constrained parametric min-
cuts for automatic object segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

Chapelle, O., & Keerthi, S. S. (2009). Efficient algorithms for ranking
with svms. Information Retrieval Journal, 13(3), 201–215.

Chum, O., & Zisserman, A. (2007). An exemplar model for learning
object classes. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition.

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for
human detection. In IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition.

Desai, C., Ramanan, D., & Fowlkes, C. (2009). Discriminative model for
multi-class object layout. In International Conference on Computer
Vision.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisser-
man, A. (2007). The PASCAL Visual Object Classes, Challenge 2007
(VOC2007) Results.

Felzenszwalb, P., McAllester, D., & Ramanan, D. (2008). A discrimina-
tively trained, multiscale, deformable part model. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition.

Felzenszwalb, P., Girshick, R., & McAllester, D. (2010). Cascade object
detection with deformable part models. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition.

Gall, J., & Lempitsky, V. (2009). Class-specific hough forests for
object detection. In IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition.

Gangaputra, S., & Geman, D. (2006). A design principle for coarse-to-
fine classification. In IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition.

Gehler, P. V., & Nowozin, S. (2009). On feature combination for multi-
class object classification. In International Conference on Computer
Vision.

Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category
dataset. Pasadena: California Institute of Technology. (Tech. Rep.
7694).

Harzallah, H., Jurie, F., & Schmid, C. (2009). Combining efficient object
localization and image classification. In International Conference on
Computer Vision.

Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual
attention for rapid scene analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20, 1254–1259.

Keysers, D., Deselaers, T., & Breuel, T. M. (2007). Geometric matching
for patch-based object detection. Electronic Letters on Computer
Vision and Image Analysis, 6(1), 44–54.

Ladický, L., & Torr, P. H. (2011). Locally linear support vector
machines. In International Conference on Machine Learning.

Lampert, C. H. (2010). An efficient divide-and-conquer cascade for
nonlinear object detection. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition.

Lampert, C. H., & Blaschko, M. B. (2009). Structured prediction by
joint kernel support estimation. Machine Learning, 77, 249–269.

Lampert, C. H., Blaschko, M. B., & Hofmann, T. (2009). Efficient sub-
window search: A branch and bound framework for object localiza-

123

268 Int J Comput Vis (2014) 106:252–268

tion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 99(1), 2129–2142.

Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories.
In IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (Vol. 2, pp. 2169–2178). Los Alamitos, CA, USA.

Lehmann, A., Leibe, B., & Van Gool, L. (2009). Feature-centric efficient
subwindow search. In International Conference on Computer Vision.

Lehmann, A., Gehler, P., & Gool, L. V. (2011a). Branch&Rank: Efficient
non-linear object detection. In Proceedings of the British Machine
Vision Conference. Dundee, UK.

Lehmann, A., Leibe, B., & Van Gool, L. (2011b). Fast prism: Branch
and bound hough transform for object class detection. International
Journal of Computer Vision, 94(2), 175–197.

Lehmann, A.D. (2011). Efficient object detection. PhD thesis,
Eidgenössische Technische Hochschule ETH Zurich. doi:10.
3929/ethz-a-006706798. (Diss. Nr. 19868, Hartung-Gorre Verlag,
Selected Readings in Vision and Graphics Vol. 69)

Lowe, D. G. (2004). Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2), 91–110.

Murphy, K., Torralba, A., & Freeman, W. T. (2003). Using the forest to
see the trees: A graphical model relating features, objects and scenes.
In Advances in Neural Information Processing Systems. MIT Press.

Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A
holistic representation of the spatial envelope. International Journal
of Computer Vision, 42(3), 145–175.

Park, D., Ramanan, D., & Fowlkes, C. (2010). Multiresolution models
for object detection. In European Conference on Computer Vision.

Pedersoli, M., Gonzalez, J., Bagdanov, A., & Villanueva, J. J. (2010).
Recursive coarse-to-fine localization for fast object detection. In
European Conference on Computer Vision.

Prisacariu, V., & Reid, I. (2009). Fasthog—A real-time gpu implemen-
tation of hog. Oxford: Department of Engineering Science, Oxford
University. (Tech. Rep. 2310/09).

Razavi, N., Gall, J., & VanGool, L. (2011). Scalable multi-class object
detection. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition.

Robertson, S. E., & Walker, S. (1994). Some simple effective approxi-
mations to the 2-poisson model for probabilistic weighted retrieval.
In ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval.

Torralba, A. (2003). Contextual priming for object detection. Interna-
tional Journal of Computer Vision, 53(2), 169–191.

Torralba, A., Murphy, K. P., & Freeman, W. T. (2010). Using the forest
to see the trees: Exploiting context for visual object detection and
localization. Commun ACM, 53(3), 107–114.

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2005). Large
margin methods for structured and interdependent output variables.
Journal of Machine Learning Research, 6, 1453–1484.

van de Sande, K. E. A., Gevers, T., & Snoek, C. G. M. (2010). Evaluat-
ing color descriptors for object and scene recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 32(9), 1582–
1596.

Vedaldi, A., Gulshan, V., Varma, M., & Zisserman, A. (2009). Multiple
kernels for object detection. In International Conference on Com-
puter Vision.

Viola, P. A., & Jones, M. J. (2004). Robust real-time face detection.
International Journal of Computer Vision, 57(2), 137–154.

Wei, Y., & Tao, L. (2010). Efficient histogram-based sliding-window.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition.

Weiss, D., Sapp, B., & Taskar, B. (2010). Sidestepping intractable infer-
ece with structured ensemble cascades. In Advances in Neural Infor-
mation Processing Systems.

Wojek, C., Dorkó, G., Schulz, A., & Schiele, B. (2008). Sliding-
windows for rapid object class localization: A parallel technique.
In DAGM-Symposium (pp. 71–81).

Wolf, L., & Bileschi, S. (2006). A critical view of context. International
Journal of Computer Vision, 69(2), 251–261.

Yeh, T., Lee, J. J., & Trevor Darrell, T. (2009). Fast concurrent object
localization and recognition. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition.

Zhang, Z., Ladick, L., Torr, P. H., & Saffari, A. (2011a). Learning anchor
planes for classification. In Advances in Neural Information Process-
ing Systems.

Zhang, Z., Warrell, J., & Torr, P. H. S. (2011b). Proposal generation for
object detection using cascaded ranking svms. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition.

123

http://dx.doi.org/10.3929/ethz-a-006706798
http://dx.doi.org/10.3929/ethz-a-006706798

	Branch&Rank for Efficient Object Detection
	Abstract
	1 Introduction
	2 Related Work
	3 Branch and Rank
	3.1 Overview
	3.2 Ranking Condition
	3.3 Best-First Search
	3.4 Non-maximum Suppression
	3.5 Connection to Branch&Bound

	4 Multi-task SVM Ranking
	4.1 Multi-task Ranking Function
	4.2 Structured SVM Ranking
	4.3 Problem Decomposition
	4.4 Decomposed SVMs and Training
	4.5 Linearization: Anchor Plane SVMs

	5 Hypothesis Set Representation
	5.1 Position, Scale, and Aspect-Ratio
	5.2 Including Set Shrinkage
	5.3 Position, Width, and Height

	6 Experiments
	6.1 Testbed and Features
	6.2 Comparison of Kernels
	6.3 Search Space Partitioning Schemes
	6.4 Multi-task Improvements
	6.5 Performance Evaluation
	6.6 Efficiency: often less than 100 classifier calls

	7 Conclusion
	References

