Inferring causality from passive observations

Dominik Janzing

Max Planck Institute for Intelligent Systems
Tübingen, Germany

18.-22. August 2014
1. why the relation between statistics and causality is tricky
2. causal inference using conditional independences (statistical and general)
3. causal inference using other properties of joint distributions
4. causal inference in time series, quantifying causal strength
5. why causal problems matter for prediction
Part 3: Why causality matters for prediction

- **Typical scenarios of machine learning**
 supervised learning, unsupervised learning, semi-supervised learning
- **Causality and semi-supervised learning**
- **Some methods of machine learning**
 support vector machines, reproducing kernel Hilbert spaces
- **Prediction from many variables**
 Markov blanket
- **Kind of summary**
Typical scenarios of machine learning
Typical machine learning problems

- read hand-written letters/digits (given as pixel vectors)
- classify the topics of documents (i.e. in the internet)
- predict the structure of proteins from their acid sequence
- classify cell tissue into tumors and healthy tissue from gene expression data
Scenario with i.i.d. data

Task: predict y from x after observing some samples i.i.d. drawn from $P(X, Y)$.

The variables may attain values in a high-dimensional space (e.g. pixel vector in $\mathbb{R}^{20 \cdot 20}$, gene expression vector in $\mathbb{R}^{28,000}$).
Regression and classification

- Regression: continuous label Y

- Classification: discrete label Y
Learn to predict Y from X, given some observations. Which observations are given?

- **supervised learning:**
 some pairs $(x_1, y_1), \ldots, (x_n, y_n)$

- **unsupervised learning:**
 only unlabelled x-values x_1, \ldots, x_k

- **semi-supervised learning (SSL):**
 some pairs $(x_1, y_1), \ldots, (x_n, y_n)$ and some unlabelled x-values x_{n+1}, \ldots, x_{n+k}
Unsupervised classification

separate clusters are believed to correspond to different labels y:
Semi-supervised classification

some points are labeled:

then we believe even more that the clusters correspond to different labels:

unlabeled points tell us position and angle of the hyperplane
Another example of semi-supervised classification...

Here, the shape of the clusters tells us something about the shape of the classifier.

Semi-supervised regression

- **Given:** multi-dimensional X and real-valued Y
- **Task:** infer function f such that $y \approx f(x)$
- **Observation:** x-values essentially form a lower dimensional manifold of a higher dimensional space
Semi-supervised smoothness assumption

- Assumption: the map $x \mapsto f(x)$ changes smoothly along the manifold

- Hence: the green and the yellow points have the same distance to the blue one, the green one is more likely to have a similar y

- Semi-supervised regression tries to find functions that fit the labeled data while changing smoothly along the manifold
Motivation for semi-supervised learning

• often it’s expensive to get labeled data
• while unlabeled ones are cheap

Examples:

• classify text w.r.t. its topic: labeling needs to be done by humans. Unlabeled documents are ubiquitous (e.g. in the internet)
• object recognition on images
Causality and semi-supervised learning
SSL in Causal and Anti-Causal settings

The task is to predict Y from X

causal setting: predict effect from cause
- e.g., predict splice sites from DNA sequence

anticausal setting: predict cause from effect
- e.g., breast tumor classification, image segmentation

Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij: On causal and anticausal learning, ICML 2012
SSL in Causal and Anti-Causal settings

The task is to predict Y from X

causal setting: predict effect from cause
- e.g., predict splice sites from DNA sequence

anticausal setting: predict cause from effect
- e.g., breast tumor classification, image segmentation

SSL pointless because $P(X)$ contains no information about $P(Y|X)$

SSL can help because $P(X)$ and $P(Y|X)$ may contain information about each other

Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij: On causal and anticausal learning, ICML 2012
Known SSL assumptions link $P(X)$ **to** $P(Y|X)$

- **SSL smoothness assumption**: the function $x \mapsto \mathbb{E}[Y|x]$ should be smooth in regions where $p(x)$ is large.
- **Cluster assumption**: points lying in the same cluster are likely to have the same Y.
- **Low density separation**: The decision boundary should lie in a region where $p(x)$ is small.

The above assumptions can indeed be viewed as linking properties of $P(X)$ to properties of $P(Y|X)$.
Consider classification in causal direction

- Assume X is the cause with some distribution $P(X)$:

![Diagram showing scatter plot with X_1 and X_2 axes]

- Let Y be binary and $P(Y|X)$ be some deterministic rule, e.g., a separating hyperplane. Assume ‘nature chooses’ it independently of $P(X)$:

![Diagram showing two scatter plots with separating hyperplanes]
why should the shape of the line describing $P(Y|X)$ care about the shape of $P(X)$?
Recall semi-supervised regression

We said: close points should have similar values $f(x)$ if they have a short connection *along the manifold*
Let Y and X take values in \mathbb{R} and \mathbb{R}^2, respectively and

$$X = (g_1(Y), g_2(Y)) + U,$$

where g_1, g_2 are continuous functions and U is a small noise vector.

If y is close to y' then x, x' are close along the manifold

(isolines could be like the red lines)
Choose a function \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) independent of \(P(X) \).

Then the isolines of \(f \) are not related to the manifold on which the \(x \)-values lie.
Does SSL only work in anticausal direction?

Meta-study:

- we searched the literature for empirical results on SSL with real data
- we decided (after several discussions) whether a data pair is causal or anticausal or unclear (here strongly confounded pairs were also considered anticausal)
- it turned out that none of the successful cases was causal

Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij: On causal and anticausal learning, ICML 2012
Semi-supervised classification: 8 benchmark datasets

<table>
<thead>
<tr>
<th>Category</th>
<th>Dataset</th>
<th>Reason of categorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticausal/Confounded</td>
<td>g241c</td>
<td>The class causes the 241 features.</td>
</tr>
<tr>
<td></td>
<td>g241d</td>
<td>The class (binary) and the features are confounded by a variable with 4 states.</td>
</tr>
<tr>
<td></td>
<td>Digit1</td>
<td>The positive or negative angle and the features are confounded by the variable of continuous angle.</td>
</tr>
<tr>
<td></td>
<td>USPS</td>
<td>The class and the features are confounded by the 10-state variable of all digits.</td>
</tr>
<tr>
<td></td>
<td>COIL</td>
<td>The six-state class and the features are confounded by the 24-state variable of all objects.</td>
</tr>
<tr>
<td>Causal</td>
<td>SecStr</td>
<td>The amino acid is the cause of the secondary structure.</td>
</tr>
<tr>
<td>Unclear</td>
<td>BCI, Text</td>
<td>Unclear which is the cause and which the effect.</td>
</tr>
</tbody>
</table>

Semi-supervised classification: 8 benchmark datasets

Comparison of 11 SSL methods with the base classifiers 1-NN and SVM (star).

- In the causal case (red) the star is below the other points, i.e., SSL performed worse than methods without SSL.
- In the other cases the star is often above the other points, SSL helped.

Table 1. Categorization of eight benchmark datasets of Section 5 (Semi-supervised classification) as Anticausal/Confounded, Causal or Unclear

<table>
<thead>
<tr>
<th>Category</th>
<th>Dataset</th>
<th>Reason of categorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticausal/Confounded</td>
<td>g241c</td>
<td>The class causes the 241 features.</td>
</tr>
<tr>
<td></td>
<td>g241d</td>
<td>The class (binary) and the features are confounded by a variable with 4 states.</td>
</tr>
<tr>
<td>Causal</td>
<td>Digit1</td>
<td>The positive or negative angle and the features are confounded by the variable of continuous angle.</td>
</tr>
<tr>
<td></td>
<td>USPS</td>
<td>The class and the features are confounded by the 10-state variable of all digits.</td>
</tr>
<tr>
<td></td>
<td>COIL</td>
<td>The six-state class and the features are confounded by the 24-state variable of all objects.</td>
</tr>
<tr>
<td>Unclear</td>
<td>BCI, Text</td>
<td>Unclear which is the cause and which the effect.</td>
</tr>
</tbody>
</table>

Semi-supervised classification: 26 UCI datasets

<table>
<thead>
<tr>
<th>Category</th>
<th>Dataset</th>
<th>Reason of categorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticausal/Confounded</td>
<td>breast-w</td>
<td>The class of the tumor (benign or malignant) causes some of the features of the tumor (e.g., thickness, size, shape etc.).</td>
</tr>
<tr>
<td></td>
<td>diabetes</td>
<td>Whether or not a person has diabetes affects some of the features (e.g., glucose concentration, blood pressure), but also is an effect of some others (e.g. age, number of times pregnant).</td>
</tr>
<tr>
<td></td>
<td>hepatitis</td>
<td>The class (die or survive) and many of the features (e.g., fatigue, anorexia, liver big) are confounded by the presence or absence of hepatitis. Some of the features, however, may also cause death.</td>
</tr>
<tr>
<td></td>
<td>iris</td>
<td>The size of the plant is an effect of the category it belongs to.</td>
</tr>
<tr>
<td></td>
<td>labor</td>
<td>Cyclic causal relationships: good or bad labor relations can cause or be caused by many features (e.g., wage increase, number of working hours per week, number of paid vacation days, employer’s help during employee’s long term disability). Moreover, the features and the class may be confounded by elements of the character of the employer and the employee (e.g., ability to cooperate).</td>
</tr>
<tr>
<td></td>
<td>letter</td>
<td>The class (letter) is a cause of the produced image of the letter.</td>
</tr>
<tr>
<td></td>
<td>mushroom</td>
<td>The attributes of the mushroom (shape, size) and the class (edible or poisonous) are confounded by the taxonomy of the mushroom (23 species).</td>
</tr>
<tr>
<td></td>
<td>segment</td>
<td>The class of the image is the cause of the features of the image.</td>
</tr>
<tr>
<td></td>
<td>sonar</td>
<td>The class (Mine or Rock) causes the sonar signals.</td>
</tr>
<tr>
<td></td>
<td>vehicle</td>
<td>The class of the vehicle causes the features of its silhouette.</td>
</tr>
<tr>
<td></td>
<td>vote</td>
<td>This dataset may contain causal, anticausal, confounded and cyclic causal relations. E.g., having handicapped infants or being part of religious groups in school can cause one’s vote, being democrat or republican can causally influence whether one supports Nicaraguan contras, immigration may have a cyclic causal relation with the class. Crime and the class may be confounded, e.g., by the environment in which one grew up.</td>
</tr>
<tr>
<td></td>
<td>vowel</td>
<td>The class (vowel) causes the features.</td>
</tr>
<tr>
<td></td>
<td>waveform-5000</td>
<td>The class of the wave causes its attributes.</td>
</tr>
<tr>
<td>Causal</td>
<td>balance-scale</td>
<td>The features (weight and distance) cause the class.</td>
</tr>
<tr>
<td></td>
<td>kr-vs-kp</td>
<td>The board-description causally influences whether white will win.</td>
</tr>
<tr>
<td></td>
<td>splice</td>
<td>The DNA sequence causes the splice sites.</td>
</tr>
<tr>
<td>Unclear</td>
<td>breast-cancer, colic, colic.ORIG, credit-a, credit-g, heart-c, heart-h, heart-statlog, ionosphere, sick</td>
<td>In some of these datasets, it is unclear whether the class label has been generated or defined based on the features (e.g., Ionosphere, Credit Approval, Sick).</td>
</tr>
</tbody>
</table>

Comparison of a SSL method with 6 corresponding non-SSL-based classifiers.

- all red points are below or on the zero line, i.e., SSL performed worse or equal than all the non-SSL-based methods
- blue and green points are sometime above the line, i.e., SSL helped.
to understand *how* SSL works...

Some basic ideas of machine learning
Binary classification

Examples:

- distinguish between 0 and 1 from given pixel vectors in handwritten digits
- distinguish between healthy cells and tumor cells given the vector of gene expression levels

- **given:** some training examples \((x_1, y_1), \ldots, (x_n, y_n)\) with \(x_j \in \mathbb{R}^k\) and \(y_j \in \{-1, +1\}\) (two classes)

- **goal:** find a function \(f\) that separates the two classes

- **assumption:** there is a linear classifier, i.e., an affine \(f\) such that \(f(x_j) > 0\) if and only \(y_j = +1\)
choose the hyperplane that maximizes the margin:
find $w \in \mathbb{R}^k$ and $b \in \mathbb{R}$ that minimize $\|w\|^2$ subject to
$$y_j(\langle w, x_j \rangle + b) \geq 1 \quad \forall j = 1, \ldots, n$$
The support vectors are those x_j that lie on the boundary of the margin:

Support vectors

Observations:

- Points other than support vectors are irrelevant for the optimization.
- The optimal w lies in the span of the support vectors.
Soft margin SVMs

Often there is no hyperplane that classifies all points correctly:

maximize margin while avoiding too large error terms
How can we include unlabelled points?
Transductive support vector machine

see e.g. Joachims: Transductive support vector machines, 2006

maximize the margin using also the unlabelled points (yields computationally hard optimization problem)
here we need a non-linear function f for classification

In other words: find a function f for which $f(x_j) > 0$ if $y_j = +1$ and $f(x_j) < 0$ if $y_j = -1$.

Non-linear classification via feature maps

• define a map \(\phi \) that maps \(x \) to non-linear functions of \(x \):

\[
\phi(x) := \begin{pmatrix}
 f_1(x) \\
 f_2(x) \\
 f_3(x) \\
\vdots \\
\vdots \\
\vdots
\end{pmatrix} \in \mathcal{H}
\]

• in this high-dimensional space \(\mathcal{H} \), a non-linear function may turn into a linear one

• example: let \(x = (x_1, x_2) \in \mathbb{R}^2 \) and define

\[
\phi(x) := \begin{pmatrix}
 x_1^2 \\
 x_1^2 \\
 x_2^2
\end{pmatrix}.
\]

Then the circle \(x_1^2 + x_2^2 = 1 \) is given by the linear equation

\[
\phi_1(x) + \phi_2(x) = 1
\]
‘Powerful’ feature maps

• we don’t need to design a different feature map for every problem (for instance one that already knows the classifier)
• it will turn out that there are feature maps that are so powerful that they can always be used
• idea: choose a map that contains an infinite set of functions, e.g.,

\[
\phi(x) = \begin{pmatrix} x \\ x^2 \\ x^3 \\ \cdot \\ \cdot \\ \cdot \end{pmatrix}.
\]
The kernel trick: we don’t need ϕ itself...

Define the function

$$k(x, x') := \langle \phi(x), \phi(x') \rangle.$$

- recall optimization problem:
 minimize $\|w\|^2$ subject to
 $$y_j(\langle w, x_j \rangle + b) \geq 1 \quad \forall j = 1, \ldots, n$$

- recall that the optimal w can be written as
 $$w = \sum_j a_j \phi(x_j)$$

 with some appropriate a

- to classify a new point x we only need to compute
 $$\sum_j a_j \langle \phi(x_j), \phi(x) \rangle = \sum_j a_j k(x_j, x).$$
General remarks

• Many other machine learning algorithms also rely on inner products only
• Then it is sufficient to know the ‘kernel’ k instead of knowing ϕ explicitly
• k can be rather simple functions even for complex ϕ.

Example: for $
\phi(x) := \begin{pmatrix}
\frac{1}{\sqrt{d_1}} x \\
\sqrt{d_2} x^2 \\
\vdots \\
\sqrt{d_d} x^d
\end{pmatrix},
$
we have

$$k(x, x') = \langle \phi(x), \phi(x') \rangle = (xx' + 1)^d.$$
Define vector spaces by kernels

Turning around the idea: define a vector space via the kernel.

Question:
Given a function

\[(x, x') \mapsto k(x, x') ,\]

under which conditions is there a map \(\phi\) such that

\[k(x, x') = \langle \phi(x), \phi(x') \rangle ?\]
A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a positive definite kernel if for all $k \in \mathbb{N}$ and any x_1, \ldots, x_k, the matrix $k(x_i, x_j)$ is positive definite, i.e.,

$$\sum_{ij} c_i c_j k(x_i, x_j) \geq 0,$$

for all vectors $c \in \mathbb{R}^k$.

Idea: positive definite functions are like positive definite matrices with continuous index x.
Theorem

Let \mathcal{H} be a real-valued vector space with inner product and and $\phi : \mathcal{X} \rightarrow \mathcal{H}$ be a map then

$$k(x_i, x_j) := \langle \phi(x_i), \phi(x_j) \rangle$$

is a positive definite kernel

Proof:

$$\sum_{ij} c_i c_j \langle \phi(x_i), \phi(x_j) \rangle = \left\langle \sum_i c_i \phi(x_i), \sum_j c_j \phi(x_j) \right\rangle \geq 0.$$
Terminology: Hilbert spaces

- (possibly infinite-dimensional) vector space \mathcal{H}
- endowed with an inner product

$$\langle ., . \rangle : \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$$

$$\langle ., . \rangle : \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}$$

- complete w.r.t. inner product norm, i.e., every Cauchy sequence in \mathcal{H} has a limit in \mathcal{H}

Examples: $\mathbb{C}^n, \mathbb{R}^n, L^2(\mathbb{R}), \ell^2(\mathbb{N})$
Theorem (Proposition 2.14 in Schölkopf & Smola, 2002)

Let \mathcal{X} be a topological space and $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a continuous positive definite kernel, then there exists a Hilbert space \mathcal{H} and a continuous map $\phi : \mathcal{X} \rightarrow \mathcal{H}$ such that for all $x, x' \in \mathcal{X}$, we have

$$k(x, x') = \langle \phi(x), \phi(x') \rangle .$$

Hence: feature maps ϕ define kernels and vice versa
Examples for kernels

- **Gauss kernel:** \(k : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \)

 \[k(x, x') := e^{-\frac{\|x-x'\|^2}{2\sigma^2}}. \]

- **polynomial kernel:**

 \[k(x, x') := \langle x, x' \rangle^d \]

- **inhomogeneous polynomial kernel:**

 \[k(x, x') := (\langle x, x' \rangle + 1)^d \]
Reproducing kernel Hilbert space (RKHS)

How to get \mathcal{H} from k:

- Every x defines a function $f_x : X \mapsto \mathbb{R}$ via
 $$f_x(x') := k(x, x').$$

- Define an inner product by
 $$\langle f_x, f_{x'} \rangle := k(x, x').$$

- Let \mathcal{H} be the smallest Hilbert space containing all these functions $(f_x)_{x \in X}$ with the above inner product.
Gauss kernel is powerful

Define

\[k(x, x') := e^{\frac{-\|x-x'\|^2}{2\sigma^2}}, \]

then there is a sense in which every continuous function can be approximated by elements in \(\mathcal{H} \).

Therefore, support vector machine with the Gaussian kernels are able to find curved separating hyperplanes:
Likewise...

Transductive SVM with Gauss kernels is able to find curved separating hyperplanes based on the pattern of the unlabeled points:
Applications of SSL

e.g. Nigam et al: Semi-supervised text classification using EM, 2006

Text classification

• **task:** assign a topic y to a document x in the internet

• **given:** a few labelled documents $(x_1, y_1), \ldots, (x_n, y_n)$ (expensive, done by humans), and a huge number of unlabelled examples x_{n+1}, \ldots, x_{n+k}

• **idea:** different topics correspond to clusters in high-dimensional space (x vector of word counts, i.e., $x \in \mathbb{N}_0^d$ where d is the size of the vocabulary)
Prediction from many variables
Prediction tasks where causal information may be irrelevant

Health Insurance company asks a customer before giving a contract:

- age
- job
- hobbies
- address

to determine the risk of getting sick.

It does not matter whether these features are causal or not - properties that correlate with the risk are useful regardless of whether they are causes!
Markov blanket (set of relevant variables)

• **given:** causal DAG with nodes X_1, \ldots, X_n

• **task:** predict X_j from all the other variables

• **obvious solution:** best prediction given by

$$p(X_j|X_1, \ldots, X_{j-1}, X_{j+1}, \ldots, X_n).$$

• **goal:** remove irrelevant nodes

• **question:** what’s the smallest set of variables S such that

$$X_j \perp \!
\!
\perp X_S | X_{\bar{S}} \setminus X_j?$$

• **answer:** Markov blanket, i.e., the parents and the children of X_j, and the other parents of the latter (if we assume faithfulness)
Proof that Markov blanket is the smallest set

• Let $M(j)$ be the Markov blanket of X_j. Then

$$X_j \perp\!\!\!\!\perp X_{M(j)} | X_{\tilde{M}(j)} \setminus X_j,$$

(1)

can be checked via d-separation

• every set S satisfying (1) contains $M(j)$:
 • no set can d-separate X_j from its parents or children. Therefore they are contained in S
 • conditioning on the children of X_j unblocks the path to the parents of the children, no matter which variables we condition on
• **Definition via causal terminology:**
 consists of parents, children and further parents of the children

• **Definition via predictive relevance:**
 minimal set of variables that render all others irrelevant

Two perspectives:

• Causal structure tells us which variables are irrelevant because they are conditionally independent

• Conditional independences tell us causal structure

Argument for causality seems circular!
Predicting from causes is more robust

- \(P(V|C) \) predicts \(V \) from its cause ('causal prediction')

- \(P(V|E) \) predicts \(V \) from its effect ('anticausal prediction')

- \(P(V|E) \) changes when background condition \(B \) changes because \(V \not\perp\!\!\!\!\perp B | E \)

- \(P(V|C) \) remains constant ('covariate shift') since \(V \perp\!\!\!\!\perp B | C \).

Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij ICML 2012
Kind of summary
Two types of asymmetries between cause and effect

- **Independence based assumption**: \(P(C) \) and \(P(E|C) \) contain no information about each other because ‘nature chooses them independently’
 - no SSL in causal direction
 - \(P(C) \) and \(P(E|C) \) are algorithmically independent
 - \(p(C) \) is not particularly large in regions where \(f \) has large slope (IGCI)

- **Occam’s Razor assumption**: Decomposition of \(P(C, E) \) into \(P(C)P(E|C) \) tends to be simpler than decomposition into \(P(E)P(C|E) \)
 - \(P(E|C) \) may be of some simple type, e.g. non-linear additive noise, while \(P(C|E) \) isn’t
 - some Bayesian method not mentioned
 - \(K(P(C)) + K(P(E|C)) \leq K(P(E)) + K(P(C|E)) \)
Relating the two types via a toy model

• choose $P(C)$ randomly from some finite set $P_i(C)$ with $i = 1, \ldots, n$

• choose $P(E|C)$ randomly from some finite set $P_j(E|C)$ with $j = 1, \ldots, n$

• then $P_i(C)P_j(E|C)$ defines n^2 different distributions $P_{ij}(C, E)$

• generically, this yields n^2 different distributions $P_{ij}(E)$ and $P_{ij}(C|E)$

• hence, the backwards conditionals $P(E)$ and $P(C|E)$ run over a larger set
Future work

find appropriate ways to compare complexities of $P(X), P(Y|X)$ to $P(Y)P(X|Y)$
Humans intuition about anticausal conditionals $P(C|E)$ can be pretty bad:

- Consider a random walk on \mathbb{Z}
- Let X_t be the position at time t
- Let $p(X_{t+1}|X_t) = 1/2$ for $|X_{t+1} - X_t| = 1$
- Try to infer $p(X_t|X_{t+1})$
Humans intuition about anticausal conditionals $P(C|E)$ can be pretty bad:

- Consider a random walk on \mathbb{Z}
- Let X_t be the position at time t
- Let $p(X_{t+1}|X_t) = 1/2$ for $|X_{t+1} - X_t| = 1$
- Try to infer $p(X_t|X_{t+1})$

Many people think it would also be symmetric, i.e., given X_{t+1}, the two possibilities $X_t = X_{t+1} \pm 1$ would be equally likely.

We are used to think in terms of causal conditionals, because they define the mechanisms.
• Asymmetries of cause and effect do exist (at least in the sense that decision rate above chance level is possible)

• Initial scepticism against the field has decreased

• Try your own ideas, good methods need not build upon the existing ones
Thank you for your attention