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Abstract
Wepostulate a principle stating that the initial condition of a physical system is typically
algorithmically independent of the dynamical law.Wediscuss the implications of this principle and
argue that they link thermodynamics and causal inference. On the one hand, they entail behavior that
is similar to the usual arrow of time.On the other hand, theymotivate a statistical asymmetry between
cause and effect that has recently been postulated in the field of causal inference, namely, that the
probability distribution Pcause contains no information about the conditional distribution Peffect cause

and vice versa, while Peffect may contain information about Pcause effect.

1. Introduction

Drawing causal conclusions fromstatistical data is at theheart ofmodern scientific research.While it is generally
accepted that active interventions to a system (e.g. randomized trials inmedicine) reveal causal relations, statisticians
havewidely shied away fromdrawing causal conclusions from passiveobservations.Meanwhile, however, the
increasing interdisciplinaryfield of causal inference has shown that also the latter is possible—evenwithout
informationabout timeorder—if appropriate assumptions that link causality and statistics aremade [1–3], with
applications in biology [4], psychology [5], and economy [6].More recently, also foundational questions of
quantumphysics have been revisited in light of the formal language andparadigmsof causal inference [7–13].

Remarkably, recent results from causal inference have also provided new insights about the thorny issue of
the arrowof time. Contrary to awide-spread belief, the joint distribution PX Y, of two variablesX andY
sometimes indicates whetherX causesY or vice versa [14].More conventionalmethods rely on conditional
independencies and thus require statistical information of at least three observed variables [1, 2]. The intuitive
idea behind the new approach is that ifX causesY, PX contains no information about PY X and vice versa.Within
this context it is not obvious, however, how tomake precise themeaning of information. Accordingly, different
formalizations of this intuitive notion have been proposed.

Thealgorithmic information approachproposed in [15, 16]gives aprecisemeaning to informationbypostulating
that knowing PY X doesnot admit a shorter descriptionofPX andvice versa.This is the approachwewill followmore
closelyhere, inparticular fordrawing a link to thermodynamics, given that algorithmic informationhas alreadybeen
related to the thermodynamic entropy [17].Nevertheless,we should alsomentionan interpretation for themeaningof
information recently stated in the context ofmachine learning,moreprecisely in semi-supervised learning (SSL).

SSL algorithms learn the statistical relation between two randomvariablesX andY from some (x, y)-pairs
¼( ) ( )x y x y, , , ,n n1 1 plus some unpaired instances ¼+ +x x, ,n n k1 . The algorithms are then supposed to predict y

(or the conditional distribution =PY X x) for any given input x.Without the unpaired instances, onewould obtain
the so-called supervised learning scenario [18]. There is an ongoing debate [19] in thefield about inwhich sense
and underwhich conditions the unpaired x-values (which, a priori, only tell us something aboutPX) contain
information about the relation betweenX andY. Rephrasing this in the language used above: does PX contain
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information about PY X? References [20, 21] draw the link to causality by the conjecture that the additional x-
values do not help to learn PY X ifX is the cause andY the effect (the ‘causal learning’ scenario), while theymay
helpwhenY is the cause andX the effect (the ‘anticausal learning’ scenario). The hypothesis is supported by a
meta-study that only found success cases of SSL in the literature for the anticausal but not for the causal learning
scenario [20, 21]6. This suggests that the ‘no information’ idea—despite its apparent vagueness—describes an
asymmetry between cause and effect that is already relevant for scientific tasks other than causal inference. It is
thus natural to explore such kind of asymmetries in the context of physical systems.

As amatter of fact, like the asymmetries between cause and effect, similar asymmetries betweenpast and future
are alsomanifest even in stationary time series [22]which can sometimes be used to infer the directionof empirical
time series (e.g. infinance or brain research)or to infer the timedirectionofmovies [23]. Altogether, these results
suggest a deeper connection for the asymmetries between cause versuseffect andpast versusfuture. Inparticular, a
physical toymodel relating such asymmetries to the usual thermodynamic arrowof timehas beenproposed [24].

Motivated by all these insights, we propose a foundational principle for both types of asymmetries, cause
versuseffect and past versusfuture. The contributions of this paper are the following:

(1)We postulate a principle stating that the initial state of a physical system and the dynamical law to which it is
subjected to should be algorithmically independent.

(2)As we show, this principle implies for a closed system the non-decrease of physical entropy if the latter is
identifiedwith algorithmic complexity (also called ‘Kolmogorov complexity’). Thus, it reproduces the
thermodynamic behavior for closed systems given earlier insights on the thermodynamic relevance of
algorithmic information proposed in the literature [17].

(3)Our principle brings new insights to understand open system and we apply it to a toy model representing
typical cause–effect relations.

(4)We show that the algorithmic independence of Pcause and Peffect cause stated earlier can be seen as part of this
principle, if we identify cause and effect with the initial and final states of a physical system, respectively.

This paper thus links recently stated ideas from causal inferencewith a certain perspective of
thermodynamics. To bridge such different lines of research, we start by reviewing several relevant ideas of both.

Algorithmic randomness in thermodynamics.We start by briefly introducing some basic notions of
algorithmic information theory. The algorithmic randomness (also called ‘algorithmic complexity’, ‘algorithmic
information’, or ‘Kolmogorov complexity’)K(s) of a binary string s is defined as the length of its shortest
compression.More precisely,K(s) is the length of the shortest programon a universal Turingmachine (with
prefix-free encoding) that generates s and then stops [25, 26].We call this shortest program7 s* the shortest
compression of s.

The conditional algorithmic complexity ( ∣ )K s t is defined as the lengthof the shortest programgenerating the
output s from the input t. A slightly different quantity is ( ∣ )*K s t since the input *t is slightlymore valuable than the
input t. This is because aTuringmachine is able to convert *t into t (bydefinition), while there canbe inprinciple no
algorithm thatfinds *t when t is given.One can therefore show that ( ∣ )K s t maybe larger than ( ∣ )*K s t by a term that
can growatmost logarithmically in the size of the lengthof t. Accounting for this kindof subtleties, several statements
in Shannon information theoryhavenice analogues in algorithmic information theory. For instance, the
informationof a pair8 is givenby a sumof the informationof one string and the conditional informationof the other:

= +
+( ) ( ) ( ∣ )*K s t K s K s t, .

As common in algorithmic information theory [27], the equation is not exact and therefore the equation sign is
marked by the symbol+ indicating an error term that can be upper bounded by a constant (which does not
depend of the strings involved, but does depend on theTuringmachine).

As further analogue to Shannon information theory, algorithmicmutual information can be defined in three
equivalent ways [26]:

+ - = - = -
+ +( ) ≔ ( ) ( ) ( ) ( ) ( ∣ ) ( ) ( ∣ )* *I s t K s K t K s t K s K s t K t K t s: , .

6
Note that success of SSL does not necessarily imply that the unpaired x-values contained information about PY X . Instead, they could have

helped tofit a function that is particularly precise in regionswhere the x-values are dense. Themeta-study suggests, however, that thismore
subtle phenomenon does not play themajor role in current SSL implementations.
7
If there aremore than one such program,we refer to thefirst onewith respect to some standard enumeration of binarywords.

8
Algorithmic information of apairof binarywords can bedefinedbyfirst converting the pair to one string by somefixedbijectionbetweenpairs

and single binarywords,which can easily be constructed by enumerating binarywords and thenusing somefixedbijectionof ´  and .
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Intuitively speaking, ( )I s t: is the number of bits savedwhen s and t are compressed jointly rather than
independently, or, equivalently, the number of bits that the description of s can be shortenedwhen the shortest
description of t is known, and vice versa.

There are cases where Shannon information and algorithmic information basically coincide: Let ¼x x, , n1 be
samples drawn froma fixed distribution PX on some alphabet . If sn denotes the binary encoding of the n-tuple

¼( )x x, , n1 , then the algorithmic information rate ( )K s nn converges almost surely [27] to the Shannon entropy

å= -( ) ( ) ( )H p p x p xlog .
x

x

Here and throughout the paper, lower case letters denote probability densities (for discrete distributions the
density is just the probabilitymass function) corresponding to the respective distributions. For instance, pX
denotes the density ofPX, andwhenever this causes no confusion, wewrite p(x) instead of pX for sake of
convenience.

Themore interesting aspects of algorithmic information, however, are thosewhere the information content
of a string cannot be derived fromShannon entropy. On the one hand, the asymptotic statement on the
information rate blurs the fact that the description length of a typical n-tuple is given by +( ) ( )nH p K pX X .
Hence, the description length of the distribution also needs to be accounted for; in order to achieve the
compression length ( )nH pX onewould need to know pX, hence the full description of sn involves also describing
pX [28]. In the context of causal inference it has been pointed out [15] that the description length of the joint
distribution of some randomvariables sometimes also contains information about the underlying causal links
between the variables. Therefore, in causal discovery, restricting attention to Shannon information unavoidably
ignores essential aspects of information.

A second reasonwhy Shannon information is not sufficient for our purpose is that a stringmay not result
from independent sampling at all. If, for instance, s describes the state of amulti-particle system, the particles
may have interacted and hence the particle coordinatesmay be correlated. Then, treating the joint state of the
system as if each particle coordinate would have been drawn independently at randomoverestimates the
description length because it ignores the correlations. In this sense, algorithmic information includes aspects of
information that purely statistical notions of information cannot account for.

In a seminal paper, Bennett [29] proposed to considerK(s) as the thermodynamic entropy of amicroscopic
state of a physical systemwhen s describes the latter with respect to some standard binary encoding after
sufficientlyfine discretization of the phase space. This assumes an ‘internal’ perspective (followed in parts of this
paper), where themicroscopic state is perfectly known to the observer. AlthoughK(s) is in principle
uncomputable, it can be estimated from the Boltzmann entropy inmany-particle systems, given that the
microscopic state is typical in a set of states satisfying somemacroscopic constraints [17, 29]. That is, in practice
one needs to rely onmore conventional definitions of physical entropy.

From a theoretical and fundamental perspective, however, it is appealing to have a definition of entropy that
neither relies onmissing knowledge like the statistical Shannon/von-Neumann entropy [30, 31]nor on the
separation betweenmicroscopic versusmacroscopic states—which becomes problematic on themesoscopic
scale—like the Boltzmann entropy [32]. For imperfect knowledge of themicroscopic state, Zurek [17] considers
thermodynamic entropy as the sumof statistical entropy andKolmogorov complexity [33], which thus unifies
the statistical and the algorithmic perspectives of physical entropy.

To discuss howK(s) behaves underHamiltonian dynamics, notice that the dynamics on a continuous space
is usually not compatible with discretization, which immediately introduces also statistical entropy in addition
to the algorithmic term—particularly for chaotic systems [34]—in agreementwith standard entropy increase by
coarse-graining [35, 36]. Remarkably, however,K(s) can also increase by applying a one-to-onemapD on a
discrete space [17]. Then +( ) ( )K s K D is the tightest upper bound for ( ( ))K D s that holds for the general case.
For a system starting in a simple initial state s and evolving by the repeated application of some simplemap D̃, the
description of ≔ ( ) ≔ ˜ ( )s D s D st

t essentially amounts to describing t andZurek derives a logarithmic entropy
increase until the scale of the recurrence time is reached [17]. Although logarithmic growth is rather weak [34], it
is worthmentioning that the arrow of time here emerges from assuming that the system starts in a simple state.
Wewill later argue that this is just a special case of the idea that we propose here, that is, that the initial state is
independent ofD. The fact thatK depends on theTuringmachine could arguably spoil its use in physics.
However, in the spirit of Deutsch’s idea that the laws of physics determine the laws of computation [37], future
researchmay define a ’more physical version’ ofK by a computationmodel whose elementary steps directly use
physically realistic particle interactions, see e.g. the computationmodels in [38–40].Moreover, quantum
thermodynamics [41] should rather rely on quantumKolmogorov complexity [42].

Algorithmic randomness in causal inference.Reichenbach’s principle [43] states that every statistical
dependence between two variables X Y, must involve some sort of causation: either direct causation (X causesY
or vice versa) or a common cause for bothX andY. Conversely, variables without causal relation are statistically
independent. However, causal relations in real life are not always inferred from statistical relations. Often, one
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just observes similarities between single objects that indicate a causal relation. As argued in [15], two binary
words x y, , representing two causally disconnected objects should be algorithmically independent, i.e.

=
+( )I x y: 0.

Depending on the context, wewill here read the equation sign=
+
in two different ways: for theorems, symbols

like x y, are considered placeholders for strings that can be arbitrarily long. Then=
+
means that the error term

does not growwith the length of the strings (although it does depend on theTuringmachine). In a concrete
applicationwhere x and y are fixedfinite strings, this is certainlymeaningless. Thenwe interpret=

+
by saying that

the error is ‘small’ compared to the complexity of the strings under consideration (provided that the latter are
complex enough). The decision aboutwhat ‘sufficiently complex’means is certainly difficult, but analogue issues
also occur in statistics: rejecting or accepting statistical independence also depends on the choice of the
significance levels (which can never be chosen by purely scientific reasons) since statistical independence actually
refers to an infinite sample limit that is never reached in real-life. For sake of simplicity, wewill henceforth just
distinguish between dependent versusindependent.

Rephrasing the ideas of [15], one could say that algorithmic independence between objects is what typically
happenswhen objects are generatedwithout causal relations, i.e., without information exchange. To elaborate
on this idea, [16] considers amodel where strings are created according to Solomonoff’s prior [44] that is defined
as the distribution of outputs obtained by uniformly randomizing all bits in the infinite input band of a Turing
machine and conditioning on the case that the programhalts. It can be shown [45] that this results essentially (up
to factors of order 1) in the following probability distribution on the strings:

= -( ) · ( )p x c 2 ,K x

where c is a normalization constant. Obviously, Solomonoff’s prior assigns higher probability to simple strings.
For this reason, it is often considered as a very principled implementation ofOccam’s Razor in the foundations of
learning. Following this prior, if two strings x y, are generated by two independent randomprocesses of this
kind, the pair then occurs with probability

= - -( ) · ·( ) ( )p x y c, 2 2 .K x K y2

On the other hand, it occurs with probability

= -( ) · ( )p x y c, 2 ,K x y,

when it is generated in a joint process. Thus, = + -( ) ( ) ( ) ( )I x y K x K y K x y: , measures the log of the
probability ratio for the occurrence (after neglecting the constant c). In this sense, the amount of algorithmic
information shared by two objects (or,more precisely, by the strings encoding them) can be taken asmeasuring
the evidence for the hypothesis that they are causally related.Here, onemay again object that the dependence of

( )I x y: on the Turingmachine renders the claim at least vague if not useless: x and y can be independent with
respect to one Turingmachine but significantly dependent with respect to a second one. Indeed, the asymptotic
statement ‘equal up to a constant’ does not help. Apart fromour remarks from above requesting for ‘natural’
Turingmachines for the purpose of physics, wemention that [15] discusses that the notion of being causally
connected or not is also relative: assume, for instance, one considers the genomes of two humans.With respect to
a ‘usual’Turingmachinewewill observe significant amount of algorithmicmutual information just because
both genomes are fromhumans. On the other hand, given a Turingmachine that is specifically designed for
encoding humans genomes, themutual information is only significant if the subjects are related apart fromboth
being humans. Certainly, the fact that they are from the same species is also a causal relation, but if we focus on
causal relations on top of this (i.e., relatedness in the sense of family relations), we should only look at algorithmic
dependences with respect to a Turingmachine that has access to the respective background information. In
otherwords, the fact that algorithmicmutual information is relative fits well to causality being relative as well (in
the above sense).

Reference [15] further elaborates on the idea of using algorithmic dependences to obtain causal information.
It develops a graphicalmodel based framework for inferring causal relations among n objects based on
conditional algorithmic (in)dependences in analogy to conventional causal inferencewhich infers causal graphs
among n variables from conditional statistical (in)dependences [1, 2].

More surprisingly, algorithmic information can also be used to infer whetherX causesY (denoted by
X Y ) orY causesX from their joint distribution, given that exactly one of the alternatives is true9. If Pcause and

Peffect cause are ‘independently chosen by nature’ and thus causally unrelated, [15] postulates that their
algorithmicmutual information is negligible, formally

9
The difficult question howwell-defined causal directions emerge in physical systemswhereinteractions actually implymutual influence is

discussed for a toymodel in [46].
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=
+( ) ( )∣I P P: 0. 1cause effect cause

The postulate raises, however, the following questions for practical applications: First, the joint distribution of
cause and effect is not known and can only be estimated from finite data. The estimated distributionmay show
dependences between Pcause and Peffect cause that disappear in infinite sampling. Second, algorithmicmutual
information is uncomputable. For these reasons, the independence postulate has only been used as an indirect
justification of practical causal inferencemethods.We nowdescribe two examples.

Causal inference for linearmodels with non-Gaussian noise. First, consider linear non-Gaussian additive noise
models [47]: let the joint distribution PX Y, of two randomvariablesX, Y be given by the linearmodel

a= + ( )Y X N , 2X Y

where a Î X andNY is an unobserved noise term that is statistically independent10 ofX.WheneverX orNY is
non-Gaussian, it follows that for everymodel of the form a= +X Y NY X , the noise termNX andY are
statistically dependent, although theymay be uncorrelated. That is, except forGaussian variables, a linearmodel
with independent noise can hold atmost in one direction.Within that context, [47] infers the directionwith
additive independent noise to be the causal one. To justify this reasoning, [48] argues thatwhenever (2) holds,
the densities ofPY and PX Y are related by the differential equation

a
¶
¶

= -
¶
¶

-
¶

¶ ¶
( ) ( ∣ ) ( ∣ )

y
p y

y
p x y

x y
p x ylog log

1
.

X

2

2

2

2

2

Therefore, knowing PX Y enables a short description ofPY.Whenever PYhas actually high description length
(which can, of course, only be conjectured but never be proven for the specific case under consideration), we
thus reject Y X as a causal explanation. It should be emphasized that this justification does not assume that
causal relations in nature are always linear. Instead, the statement reads: whenever the joint distribution is linear
in one direction but not the other, the former is likely to be the causal direction. This is because it would be an
implausible coincidence that Pcause and Peffect cause together generate a joint distribution that admits a linear
model from effect to cause.

Information-geometric causal inference. Second, we consider the toy scenario described in [49, 50]. Assume
thatX andY are randomvariables with values in [ ]0, 1 , deterministically related by = ( )Y f X and = - ( )X f Y1 ,
where f is amonotonically increasing one-to-onemapping of [ ]0, 1 . IfX is the cause andY the effect then
Peffect cause is uniquely described by f, while Pcause effect is given by -f 1. Hence, applying (1) to this special case
yields

=
+( ) ( )I p f: 0. 3X

In trying to replace (3)with a criterion that is empirically decidable, [49]postulates

ò ò¢ = ¢( ) ( ) ( ) ( )f x p x x f x xlog d log d , 4
0

1

0

1

where ¢f denotes the derivative of f. Inwords, averaging the logarithmic slope of f over pX is the same as averaging
it over the uniformdistribution. As already observed in [49, 50], (4) is equivalent to uncorrelatedness between

¢flog and pX. Here, one interprets both functions ¢x flog and ( )x p x as random variables on the
probability space [ ]0, 1 with the uniformdistribution. Then the difference between the left- and the right-hand
side of (4) can bewritten as the covariance of these random variables:

ò ò ò¢ = ¢ - ¢( ) ( ) ( ) ( ) · ( )f p f x p x x f x x p x xCov log , log d log d d .X
0

1

0

1

0

1

To further justify (3), [50] discusses scenarios where functions f and distributionsPX are independently
generated at random in away that ensures that (4) is approximately correct with high probability. For instance,
PX can be obtained by randomly distributing some peaks across the interval [ ]0, 1 . The same type of process can
be used to generate amonotonic function f at randombecause the cumulative distribution function of any
strictly positive probability density on [ ]0, 1 defines, as desired, amonotonic bijection of [ ]0, 1 . Stating that (4)
typically holds approximately always relies on strong assumptions on the generating processes for pX and f.
Therefore, (4) is just a pragmatic way to replace algorithmic independence with a computable independence
condition. Intuitively, we consider (4) as stating that some of the peaks of pX lie in regionswhere f has large slope,
and some in regionswith small slope, such that on the average the expectation of ¢flog over pX does not
significantly differ from the onewith the uniformdistribution.

One can show [49, 50] that the independence condition (4) implies a dependence for the backwards
direction, i.e., the output density pY is positively correlated with

- ¢f 1 :

10
Note that two variables Z W, are called statistically independent if =P P PZ W Z W, , which is stronger than being uncorrelated,

i.e., =[ ] [ ] [ ]  ZW Z W .

5

New J. Phys. 18 (2016) 093052 D Janzing et al



- ¢( ) ( )f pCov log , 0, 5Y
1

with equality if and only if f is the identity. Hence, the output density pY tends to be higher in regionswhere the
function -f 1 is steep. This is because the function ‘focuses’ points into regionswhere the derivative is small. In
that sense, pY contains information about themechanism relatingX andY.Moreover, [49, 50] show that (4)
implies that the Shannon entropies of pY and pX satisfy

( ) ( ) ( )H p H p , 6
Y X

with equality if and only if f is the identify. This information theoretic implication is themain reason, among
others, for stating (4)with ¢flog instead of just using ¢f . Intuitively, (6) holds because applying f to a density
typically adds additional peaks, whichmakes the density less uniform.Only functions f that are adapted to the
specific shape of the density pX canmake it smoother. As a result, [49] proposes the cause to be the variable with
smaller entropy (subject, for course, to assuming a deterministic relation).

2. Results

A common root for thermodynamics and causal inference.Toprovide a unifying foundation connecting
thermodynamics and causal inference we postulate:

Principle 1 (Algorithmic independence between input andmechanism). If s is the initial state of a physical
system andM amap describing the effect of applying the systemdynamics for some fixed time, then s andM are
algorithmically independent, i.e.,

=
+( ) ( )I s M: 0. 7

In otherwords, knowledge of s does not enable a shorter description ofM (and vice versa, with the roles of s and
M interchanged). Here, we assume that the initial state, by definition, is a state that has not interactedwith the
dynamics before.

The last sentence requires some explanations to avoid erroneous conclusions. Belowwewill discuss its
meaning for an intuitive example (see the end of the paragraph ‘physical toymodel for a deterministic non-
linear cause-effect relation’). The examplewill also suggest that states that are independent in the sense that they
‘have never seen themechanismbefore’ occur quite often in nature. Note that ‘not seeing themechanism’ also
excludes a preparation procedure for s that accounts for the length of the time interval the dynamics is active
because this information is, by definition, considered as part ofM.

Principle 1 is entailed by the assumption that there is no algorithmic dependence in nature without an
underlying causal relation. By overloading notation, we have identifiedmechanism and statewith their
encodings into binary strings. Principle 1 needs to be takenwith a grain of salt. Again, theremay be some
information shared by s andM that we do not account for becausewe call it ‘background’ information. Assume,
for instance, we place some billiard balls on a pool table and give them randomly somemomenta. In doing this,
we are aware of the dynamical laws governing the balls, but wemay not aware of the exact size of the table. Then,
the latter is the decisive aspect of the dynamics that is algorithmically independent of the initial state.More
generally, we consider the descriptions ofM and s, given some background information and postulate
independence conditional on the latter. Although this renders the postulate somehow tautologic, it is still useful
because it hasmathematical implications which are non-trivial, although they have to be taken relative to the
respective background information.

To address further potential issues with principle 1, note that generalizations of algorithmicmutual
information for infinite strings can be found in [45], which then allows to apply principle 1 to continuous
physical state spaces.Here, however, we consider finite strings describing states after sufficientlyfine
discretizations of the state space instead, neglecting issues from chaotic systems [34] for sake of conciseness.

We should also discuss the question of how to interpret the sign=
+
in this context. For fixed s andM, the

mutual information takes one specific value and stating that they are zero ‘up to a constant term’ does notmake
sense. A pragmatic interpretation is to replace ‘up to a constant term’with ‘up to a small term’, where the
decision of what is considered small will heavily depend on the context. Amore principled interpretation is the
following. In continuous space, the binaries describing state and dynamics depend on the chosen discretization.

Then=
+
can be read as stating that the algorithmicmutual information does not increase withfiner

discretization.
Dynamics of closed physical systems. Principle 1 has implications that follow from the independence

condition (7) regardless ofwhy the independence holds in the first place. Itmay hold because the state has been
prepared independently or because somenoise has destroyed previous dependences of the state withM.
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Moreover, one could argue for a notion of ‘initial state’ that, by definition, implies that it has been prepared
independently ofM and thus, typically, shares no algorithmic informationwithM.

To show one immediate consequence, consider a physical systemwhose state space is afinite set S. Assuming
that the dynamicsD is a bijectivemap of S, it follows that the entropy cannot decrease:

Theorem1 (Noentropy decrease). If the dynamics of a system is an invertiblemapping D of a discrete set S of states
then principle 1 implies that the algorithmic complexity can never decrease when applying D to the initial state s, i.e.

+
( ( )) ( ) ( )K D s K s . 8

Proof.Algorithmic independence of s andD amounts to =
+( ) ( ∣ )*K s K s D . SinceD is invertible, s can be

computed fromD(s) and vice versa implying that =
+( ∣ ) ( ( )∣ )* *K s D K D s D . Thus, =

+( ) ( ∣ )*K s K s D

=
+ +

( ( )∣ ) ( ( ))* K D s D K D s , concluding the proof. ,

The proof is very intuitive: ifD(s) had a shorter description than s, knowingDwould enable a shorter
description of s because one could describe the latter by first describingD(s) and adding the remark ‘then apply

-D 1’. The argument does not really requireD to be injective for general states. Instead, it only uses that s can be
uniquely reconstructed fromD(s).

Dynamical laws of physical systems are often simple, i.e., have small description length. Yet, principle 1 and
theorem1 are not pointless becauseDmay also be considered as the t-fold concatenation of the samemap D̃,

where D̃ itself has negligible description length. Then, =
+( )I s D: 0 amounts to =

+( )I s t: 0. Theorem 1

implies that
+

( ˜ ( )) ( )K D s K st whenever t and s are algorithmically independent. That is, while [17] derives
entropy increase for a simple initial state s, we have derived it for all states s that are independent of t.

To further illustrate theorem1, consider a toymodel of a physical system consisting of n×m cells, each
being occupied or notwith a particle, seefigure 1. Its state is described by a binaryword swith nm digits. For
generic s, we have »( )K s nm, whilefigure 1, left, shows a simple state where all particles are in the left
uppermost corner containing k×l cells. A description of this state s consists essentially of describing k and l (up
to a negligible amount of extra information specifying that k and l describe the size of the occupied region),
which requires +k llog log2 2 bits. Assumenow that the dynamical evolutionD transforms s into ¢ = ( )s D s
where ¢s looks ‘more generic’, as shown infigure 1, right. In principle, we cannot exclude that ¢s is equally simple
as s due to some non-obvious pattern.However, excluding this possibility as unlike, theorem1 rules out any
scenariowhere ¢s is the initial state and s thefinal state of any bijectivemappingD that is algorithmically
independent of ¢s . The transition from s to ¢s can be seen as a naturalmodel of amixing process of a gas, as
described by popular toymodels like lattice gases [51]. These observations are consistent with standard results of
statisticalmechanics saying thatmixing is the typical behavior, while de-mixing requires some rather specific
tuning ofmicroscopic states. Here we propose to formalize ‘specific’ bymeans of algorithmic dependencies
between the initial state and the dynamics. Here, this view does not necessarily generate novel insights for typical
scenarios of statistical physics, but it introduces a link to crucial concepts in the field of causal inference.

So far, we have avoided to discuss whether the assumption of discrete state space came from the
discretization of a continuous system (which is problematic for reasonsmentioned earlier) or from really
focusing on discrete systems. In the former case, despite these issues, theorem 1 still shows that increase of

Figure 1. Left: cellular automaton starting in a state with small description length. Right: the state ¢s obtained from s by application of
the dynamical lawD.
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physical entropy does not necessarily require coarse graining effects. To argue for the latter view, onemay think
of a discrete quantumdynamics starting in an eigenstate with respect to some natural basis, e.g., the energy basis,
and also ending up in these basis states. To satisfy principle 1, the basismust be considered as background
information relative towhich the independence is stated.

Dynamics of open systems. Since applying (7) to closed systems reproduces the standard thermodynamic law
of non-decrease of entropy, it is appealing to state algorithmic independence for closed systemdynamics only
and then obtain conditions underwhich the independence for open system follows.Wewill then see that the
independence of Pcause and Peffect cause can be seen as an instance of the independence principle for open systems.

LetD be a one-to-onemap transforming the initial joint state (s, e) of system and environment into the final
state ¢ ¢( )s e, . For fixed e, define the open systemdynamics ¢M s s:  . If s is algorithmically independent of the
pair (D, e) (which is true, for instancewhenK(e) is negligible and s andD are independent), independence of s
andM follows because algorithmic independence of two strings a b, implies independence of a c, whenever c
can be computed from b via a programof lengthO(1), see e.g. [15], lemma 6.

Further, we can extend the argument above to statistical ensembles: consider n systemswith identical state
space S, each coupled to an environment with identical state space E (where S andE arefinite sets, for simplicity).
Let (sj, ej)∈ S× E be the initial state of the jth copy and (sj′, ej′) itsfinal state. Following the standard construction
ofMarkovian dynamics, we assume statistical independence between the initial state s and the initial
environmental state e. Further, in agreementwith the general idea of this paper, we assume also that

¼≔ ( )s s s, ,n
n1 is algorithmically independent11 of (D, en)with ¼≔ ( )e e e, ,n

n1 . For our statistical ensemble, the
empirical conditional distribution offinal sates s′, given the initial state s reads:

å å¢ »( ∣ ) ≔ ( ∣ ) ( )p s s p e s p e ,
e e

where the sum runs over all ewith = ¢ ¢( ) ( )D s e s e, , for some ¢e . The approximate equality holds because of the
statistical independence of s and e, which is approximately also true for empirical frequencies if n is large.Hence,
PS is determined by sn andPS′∣S is (in the limit of large n) determined by en andD.We thus conclude thatPS and
PS′∣S are algorithmically independent, because they are derived from two algorithmically independent objects via
a programof lengthO(1). Defining the variable ‘cause’ by the initial state of one copy S and ‘effect’ as thefinal
state, we have thus derived the algorithmic independence of Pcause and Peffect cause. Notice that it is not essential in
the reasoning above that cause and effect describe initial and final states of the same physical system, one could as
well consider a tripartite instead of a bipartite system.

Physical toymodel for a deterministic nonlinear cause–effect relation.Todescribe a case where principle 1
implies thermodynamic statements that are less standard, we revisit the toy scenario of information geometric
causal inference [49, 50] and observe that (3) implies

+
( ) ( ) ( )K p K p . 9Y X

To see this, we only need to interpret the set of probability distributions as states onwhich f defines an invertible
map and (9) follows in analogy to the proof of theorem 1because pX can be uniquely reconstructed for pYwhen f
is known. Thus, if pYhad a shorter description than pX, knowing fwould admit a shorter description of pX.
Equation (9)matches the intuition that a distribution typically gets additional peaks by applying the nonlinear
function f. Remarkably, the increase of complexity on the phenomenological level, namely the level of
distributions, is accompanied by a decrease of Shannon entropy. To avoid possible confusion, we should

Figure 2.Physical system generating a nonlinear deterministic causal relation: a particle travelling towards a structuredwall with
momentumorthogonal to thewall, where it is backscattered in a slightly different direction. x and y denote the positionswhere P
crosses a vertical line before and after the scattering process, respectively.

11
Note that this is stronger than assuming independence of sj and (D, ej) for every single component becausewe have thus also excluded

algorithmic dependences between s and e, which get only apparent when looking at thewhole ensemble.
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emphasize that the process f, although it is a bijection, is not a ‘reversible process’ in the sense of thermodynamics
because the latter term refers tomaps that are locally volume preserving in phase space and thus preserve
Shannon entropy. To further clarify this point, we nowdescribe a simple physical systemwhose dynamics yields
the function fwhen restricted to a certain part of the physical phase space. The decrease of Shannon entropy is
then perfectly consistent with the conservation of Shannon entropy for the entire system, in agreementwith
Liouville’s theorem.

Figure 2 shows a simple two-dimensional systemwith a particle P travelling towards awallW perpendicular
to themomentumofP. P crosses a line L parallel toW at some position Î [ ]x 0, 1 . Let the surface ofW be
structured such thatPhits thewall with an incident angle that depends on its vertical position. ThenP crosses L
again at some position y. Assume that L is so close toW that themapping ≕ ( )x y f x is one-to-one. Also,
assume that 0 ismapped to 0 and 1 to 1. Let the experiment be repeatedwith particles having the samemomenta
butwith different positions such that x is distributed according to some probability density pX. Assuming
principle 1, the initial distribution ofmomenta and positions does not contain information about the structure
ofW. Due to theorem 1, the scattering process thus increases the algorithmic complexity of the state. Further,
this process is thermodynamically irreversible for every thermodynamicmachine that has no access to the
structure ofW. Hence, the entire dynamical evolution is thermodynamically irreversible when the structure of
W is not known, although the Shannon entropy is preserved.

Let us now focus on a restricted aspect of this physical process, namely the process thatmaps pX to pY via the
function f, sowe can directly apply the information-geometric approach to causal inference [49]. Nowwe
conclude (9) because restricting the attention to partial aspects of two objects cannot increase theirmutual
information, see e.g., [15]. This illustrates, again, that we can either conclude (9) by applying principle 1 directly
to f, or, alternatively, we could state the principle only for the dynamics of the closed system and derive (9) by
standard arguments of algorithmic information theory. Intuitively speaking, we expect pY to contain
information about thewall. On the one hand, we already know that (4) implies that pY correlates with the
logarithmic slope of f, due to (5). On the other hand, we can also prove that pY contains algorithmic information
about f provided that ( )K pY is properly larger than pY. This is because independence of pY and fwould imply

independence of pY and -f 1 and thenwe could conclude
+

( ) ( )K p K PX Y by applying the above arguments to
-f 1 instead of f. Certainly, particles contain information about the objects they have been scattered at and not

about the ones they are going to be scattered at. Otherwise a photographic imagewould show the future and not
the past. In this sense, the observations triviallyfit to the usual arrow of time.Whatmay be unexpected according
to standard thermodynamics is, as alreadymentioned, the decrease of Shannon entropy (6), which could lead to
misleading conclusions such as inferring the time direction from pY to pX. Thus principle 1 is of particular
relevance in scenarios where simple criteria like entropy increase/decrease are inapplicable, at least without
accounting for the description of the entire physical system (that oftenmay be not available, e.g., if the
momentumof the particle is notmeasured). The example above also suggests how the algorithmic
independence could provide a new tool for the inference of time direction in such scenarios.

One could certainly time reverse the scenariowhere pY is the particle density of the incoming beamwhile pX
corresponds to the outgoing beam. Then, the incoming beamalready contains information about the structure
of the surface it is scattered at later.We now argue how tomake sense of principle 1 in this case. Of course, such a
beam can only be prepared by amachine or a subject that is aware of the surface structure and directs the
particles accordingly. As amatter of fact, particles whowere never in contact with the object cannot ‘a priori’
contain information about it. Then principle 1 can bemaintained if we consider the process of directing the
particles as part of themechanism and reject the idea of calling the state of the hand-designed beaman ‘initial’
state. Instead, the initial state then refers to the time instant before the particles have been given the fine-tuned
momenta and positions.

Arrow of time for an open system in the real world. So far, we have providedmainly examples that help for a
theoretical understanding of the common root of thermodynamics and causal inference. Apart fromdiscussing
the foundations for bothfields, the independence principle aims at describing the arrow of time for systems for
which it is not obvious how to derive asymmetries between past and future from standard thermodynamics.

As one such example, reference [52] considers audio signals from a piece ofmusic and its echo at different
places of a building and addresses the task of inferringwhich one is the original signal andwhich one its echo.On
the one hand, one can consider this task as part of causal inference with the echo being the effect of the original
signal, as in [52]. On the other hand, the problem is arguably related to the arrow of time since the echo comes
later than its original signal. Here, it would be hard to infer the time direction from entropy arguments: even if
onemanages to define a physical system like the air that carries the signal, one could hardly keep track of the
entropy contained in the entire system. The independence principle, on the other hand, does not have to account
for entropies of the entire system in order to infer the time direction. To show this, we first rephrase some results
from [52] and then discuss future directions using the principle of algorithmic independence.
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Assume the input signal is represented by the discrete time series Î( ) Xt t with real-valuedXt and the output
signal (the echo) Î( ) Yt t is obtained from the input via convolutionwith the impulse response function h:

å= -( )Y h j X .t
j

t j

In the frequency space, this amounts tomultiplying the Fourier transforms ofX andYwith the impulse response
function ĥ:

n n n n= " Î -ˆ ( ) ˆ ( ) · ˆ ( )
⎡
⎣⎢

⎤
⎦⎥Y h X

1

2
,

1

2
,

where the Fourier transform is defined by

ån pn

Î

-ˆ ( ) ≔


X Xe
t

t
t

i2

and likewise for Ŷ and ĥ. In [52] it is then postulated an independence principle stating that the power spectrum
∣ ˆ ∣X 2 and ∣ ˆ∣h 2 do not correlate, i.e., that

á ñ » á ñ á ñ∣ ˆ ∣ ∣ ˆ ∣ · ∣ ˆ∣ ( )Y X h , 102 2 2

where ò ná ñ =
-

· · d
1 2

1 2
denotes the expectation over all frequencies. A hypotheticalmodel where Î( ) Yt t is the

cause and Î( ) Xt t the effect then assumes amechanismwhose impulse response function is ĥ1 . The absolute
square of the latter is necessarily negatively correlatedwith Ŷ as one can easily show (apart fromnon-generic
exceptions) [52]. Intuitively, this is becauseY tends to have high amplitudes for those frequencies for which

n∣ ˆ ( )∣h 2 is large and hence n∣ ˆ ( )∣h1 2 is small. In this sense, independence between cause andmechanism in causal
direction implies dependence between effect andmechanism, in close analogy to the InformationGeometric
setting above.

Although the so-called spectral independence criterion (SIC) in (10) turned out to be helpful for the
experiments performed in [52], it is not hard to see its limitations: assume, for instance, that both nˆ ( )X and

nˆ ( )h mainly contain power in the region of frequencies that are close to zero. This fact alone does not show that
they contain significant amount of information about each other. After all, it is the typical behavior of any time
series that is not fractal that the power decays quickly for frequencies far away from zero (for sufficientlyfine
time discretization). Future research formore sophisticated independence criteria than (10), which are not
mislead by those kind of dependences that occurwithout causal dependence between input andmechanism,
could be guided by principle 1.

Accordingly, the basic postulate then amounts to

=
+( ˆ ˆ)I X h: 0.

We then obtain

+
+ +

( ˆ ) ( ˆ ) ( ˆ ) ( ˆ) K X K Y K X K h ,

where thefirst inequality follows, again in analogy to the proof of theorem1 and the proof of (9), and the second
one holds because Ŷ can be computed from X̂ and ĥ by a programof lengthO(1). In the generic case, ( ˆ )K Y will
thus be larger than ( ˆ )K X andwe infer themore complex signal to be the echo, which provides awell-defined
arrow of time. As a further aspect of this asymmetry between past and future, ĥ1 and Ŷ cannot be independent

because applying theorem1 in backwards directionwould then imply
+

( ˆ ) ( ˆ )K X K Y . Although algorithmic
complexity is uncomputable, it is not hopeless to approximate it by compression schemes that are appropriate
for specific tasks, see e.g. [53].

3.Discussion

Already Reichenbach linked asymmetries between cause and effect to the arrow of timewhen he argued that the
statistical dependence patterns induced by causal structures ¬ X Z Y (common cause)
versus  ¬X Z Y (common effect)naturally emerge from the time direction of appropriatemixing processes
[43]. In this workwe provide a new foundational principle describing additional asymmetries that appear when
algorithmic rather than only statistical information is taken into account. As a consequence it follows naturally
the non-decrease of entropy (if the latter is identifiedwith algorithmic complexity) and the independence
between Pcause and Peffect cause, thus providing further relations between thermodynamics and causal inference.

Non-Markovian dynamics. Intuitively, our principle resembles the standardway to obtainMarkovian
dynamics of open systems, coupling a system to a statistically independent environment [54]. In this sense, our
principle can be understood as a notion ofMarkovianity that is stronger in two respects: first, the initial state of
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the system is not only statistically but also algorithmically independent of the environment, and second, it is also
algorithmically independent of the dynamical law. It thus provides a useful new rationale forfinding themost
plausible causal explanation for given observations arising in study of open systems. It is known, however, that
non-Markovian dynamics is ubiquitous. As argued in [55], for instance, the dynamics of a quantum system
interacting strongly with the environment is notMarkovian because it does not start in a product state. Instead,
initial state of system and environment already share information. At least for these cases, wewill also expect
violations of principle 1. It should be emphasized, however, that also for non-Markovian systems (for which the
initial state has not been prepared independently of the environment) one is sometimes interested in the
question ofwhat would happen to an input state if it was prepared independently. This perspective becomes
particularly clear by discussing analogies between non-Markovian dynamics and the phenomenon of
confounding in theworld of statistics and causal inference [2].

To explain this, consider just two variablesX andYwhere the statistical dependence is entirely due to the
causal influence ofX onY. The corresponding causal relation is visualized infigure 3, left. For this relation, the
observed conditional distribution PY X can be interpreted as describing also the behavior ofYunder
interventions onX. Explicitly, =PY X x is not only the distribution ofY after we have observed thatX attains the
value x. Instead, it also decribes the distribution ofY given that we set X to the value x by an external intervention.
Using similar language as in [2], wewrite this coincidence of observational and interventional probabilities as

== =∣ ∣ ( )P P .Y X x Y do X x

On the other hand, if the dependence betweenX andY is only partly due to the influence ofX onY but also due to
the common causeZ as infigure 3, right, settingX to the value x yields a different distribution than observing the
value x, i.e.

¹= =∣ ∣ ( )P P .Y X x Y do X x

On can show [2] that the interventional probability can then be computed via

å å= ¹ =( ∣ ( )) ( ∣ ) ( ) ( ∣ ) ( ∣ ) ( ∣ ) ( )p y do x p y x z p z p y x z p z x p y x, , . 11
z z

Assume, for instance, one observes a correlation between taking amedical drug (variableX) and recovery
froma disease (variableY). Let say, the correlation is partly because the drug helps and partly becausewomen
take the drugmore often thanmen and are, at the same time,more likely to recover. The question of whether it is
worth to take the drug needs to be based on =( )PY do X x , not on PY X . If the data base contains information on the
genderZ, we can adjust for this confounder using (11) and obtain the interventional probabilities from the
observational ones. Otherwise, finding =( )PY do X x requires randomized experiments. This example shows that
although the input x is in fact not independent of themechanism relatingX andY, we are interested in the
questionwhat would happen if wemade it independent.Markovian and non-Markovian systems can be seen as
the physical analogs offigure 3, left and right, respectively: a system is non-Markovian because the future state of
the system is not only influenced by the present state but also by some commonhistory or state of the
environment. Like in the case of random variables, for a non-Markovian systemwemay be interested inwhat
would happen for a ‘typical’ input state, that is, one that is prepared independently of the state of the
environment and the dynamics.

Going back to the causal inference world, we should emphasize that algorithmic independence ofPX and
PY X has only been postulated for the causal relation infigure 3, left, and not for the confounded scenario on the
right hand side. Accordingly, confoundingmay be detected by dependences between PX and PY X [15]. Likewise,
for physical systems, dependences between a state and dynamicsmay indicate non-Markovian dynamics12.

More generally speaking, algorithmic information has also attracted interest for the foundations of physics
recently. For instance, given the recent connections between the phenomenon of quantumnonlocality [56]with

Figure 3. Left: pure ause-effect relationwithout common cause. Right: cause–effect relation that is confounded by a common cause.

12
For quantum systems, note that [13]discusses a condition that can also indicate common causes.
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algorithmic information [57, 58] and causality [7–13], our resultsmay also point newdirections for research in
the foundations of quantumphysics.
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