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Abstract

We postulate a principle stating that the initial condition of a physical system is typically
algorithmically independent of the dynamical law. We discuss the implications of this principle and
argue that they link thermodynamics and causal inference. On the one hand, they entail behavior that
is similar to the usual arrow of time. On the other hand, they motivate a statistical asymmetry between
cause and effect that has recently been postulated in the field of causal inference, namely, that the
probability distribution P, contains no information about the conditional distribution Pfect|cause
and vice versa, while P may contain information about P.;yee|effect-

1. Introduction

Drawing causal conclusions from statistical data is at the heart of modern scientific research. While it is generally
accepted that active interventions to a system (e.g. randomized trials in medicine) reveal causal relations, statisticians
have widely shied away from drawing causal conclusions from passive observations. Meanwhile, however, the
increasing interdisciplinary field of causal inference has shown that also the latter is possible—even without
information about time order—if appropriate assumptions that link causality and statistics are made [ 1-3], with
applications in biology [4], psychology [5], and economy [6]. More recently, also foundational questions of
quantum physics have been revisited in light of the formal language and paradigms of causal inference [7-13].

Remarkably, recent results from causal inference have also provided new insights about the thorny issue of
the arrow of time. Contrary to a wide-spread belief, the joint distribution Py y of two variables Xand Y
sometimes indicates whether X causes Y or vice versa [14]. More conventional methods rely on conditional
independencies and thus require statistical information of at least three observed variables [1, 2]. The intuitive
idea behind the new approach is that if X causes Y, Px contains no information about Py x and vice versa. Within
this context it is not obvious, however, how to make precise the meaning of information. Accordingly, different
formalizations of this intuitive notion have been proposed.

The algorithmic information approach proposed in [ 15, 16] gives a precise meaning to information by postulating
that knowing Py|x does notadmit a shorter description of Py and vice versa. This is the approach we will follow more
closely here, in particular for drawing a link to thermodynamics, given that algorithmic information has already been
related to the thermodynamic entropy [17]. Nevertheless, we should also mention an interpretation for the meaning of
information recently stated in the context of machine learning, more precisely in semi-supervised learning (SSL).

SSL algorithms learn the statistical relation between two random variables X and Y from some (x, y)-pairs
(2615 34)5 ---» (xp> ) plus some unpaired instances X, 11, ..., X,1. The algorithms are then supposed to predict y
(or the conditional distribution Py x—,) for any given input x. Without the unpaired instances, one would obtain
the so-called supervised learning scenario [18]. There is an ongoing debate [19] in the field about in which sense
and under which conditions the unpaired x-values (which, a priori, only tell us something about Px) contain
information about the relation between X and Y. Rephrasing this in the language used above: does Py contain

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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information about Py, x? References [20, 21] draw the link to causality by the conjecture that the additional x-
values do not help tolearn Pyy if Xis the cause and Y'the effect (the ‘causal learning’ scenario), while they may
help when Y'is the cause and X the effect (the ‘anticausal learning’ scenario). The hypothesis is supported by a
meta-study that only found success cases of SSL in the literature for the anticausal but not for the causal learning
scenario [20, 21]°. This suggests that the ‘no information’ idea—despite its apparent vagueness—describes an
asymmetry between cause and effect that is already relevant for scientific tasks other than causal inference. It is
thus natural to explore such kind of asymmetries in the context of physical systems.

As amatter of fact, like the asymmetries between cause and effect, similar asymmetries between past and future
are also manifest even in stationary time series [22] which can sometimes be used to infer the direction of empirical
time series (e.g. in finance or brain research) or to infer the time direction of movies [23]. Altogether, these results
suggest a deeper connection for the asymmetries between cause versus effect and past versus future. In particular, a
physical toy model relating such asymmetries to the usual thermodynamic arrow of time has been proposed [24].

Motivated by all these insights, we propose a foundational principle for both types of asymmetries, cause
versus effect and past versus future. The contributions of this paper are the following:

(1) We postulate a principle stating that the initial state of a physical system and the dynamical law to which it is
subjected to should be algorithmically independent.

(2) As we show, this principle implies for a closed system the non-decrease of physical entropy if the latter is
identified with algorithmic complexity (also called ‘Kolmogorov complexity’). Thus, it reproduces the
thermodynamic behavior for closed systems given earlier insights on the thermodynamic relevance of
algorithmic information proposed in the literature [17].

(3) Our principle brings new insights to understand open system and we apply it to a toy model representing
typical cause—effect relations.

(4) We show that the algorithmic independence of P.yse and Piffec|cause Stated earlier can be seen as part of this
principle, if we identify cause and effect with the initial and final states of a physical system, respectively.

This paper thus links recently stated ideas from causal inference with a certain perspective of
thermodynamics. To bridge such different lines of research, we start by reviewing several relevant ideas of both.

Algorithmic randomness in thermodynamics. We start by briefly introducing some basic notions of
algorithmic information theory. The algorithmic randomness (also called ‘algorithmic complexity’, ‘algorithmic
information’, or ‘Kolmogorov complexity’) K(s) of a binary string s is defined as the length of its shortest
compression. More precisely, K(s) is the length of the shortest program on a universal Turing machine (with
prefix-free encoding) that generates s and then stops [25, 26]. We call this shortest program” s the shortest
compression of s.

The conditional algorithmic complexity K (s|t) is defined as the length of the shortest program generating the
output s from the input #. A slightly different quantity is K (s|*) since the input ¢* is slightly more valuable than the
input . This is because a Turing machine is able to convert t* into ¢ (by definition), while there can be in principle no
algorithm that finds #* when tis given. One can therefore show that K (s|¢) may be larger than K (s|t*) by a term that
can grow at most logarithmically in the size of the length of #. Accounting for this kind of subtleties, several statements
in Shannon information theory have nice analogues in algorithmic information theory. For instance, the
information of a pair® is given by a sum of the information of one string and the conditional information of the other:

K (s, 1) = K(s) + K (s|t¥).
As common in algorithmic information theory [27], the equation is not exact and therefore the equation sign is
marked by the symbol + indicating an error term that can be upper bounded by a constant (which does not
depend of the strings involved, but does depend on the Turing machine).
As further analogue to Shannon information theory, algorithmic mutual information can be defined in three
equivalent ways [26]:

IG:t)=K(@) + K@) — K, 1) = K(s) — KG|t%) = K () — K (#]s%).

6 - . . . .

Note that success of SSL does not necessarily imply that the unpaired x-values contained information about Py,y. Instead, they could have
helped to fita function that is particularly precise in regions where the x-values are dense. The meta-study suggests, however, that this more
subtle phenomenon does not play the major role in current SSL implementations.

7 . . .
If there are more than one such program, we refer to the first one with respect to some standard enumeration of binary words.

8 Algorithmic information of a pair of binary words can be defined by first converting the pair to one string by some fixed bijection between pairs
and single binary words, which can easily be constructed by enumerating binary words and then using some fixed bijectionof N x Nand N.
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Intuitively speaking, I (s : t) is the number of bits saved when s and t are compressed jointly rather than
independently, or, equivalently, the number of bits that the description of s can be shortened when the shortest
description of tis known, and vice versa.

There are cases where Shannon information and algorithmic information basically coincide: Let x;, ..., x, be
samples drawn from a fixed distribution Py on some alphabet &'. If s, denotes the binary encoding of the n-tuple
(%15 - . .»Xp,), then the algorithmic information rate K (s,,)/n converges almost surely [27] to the Shannon entropy

H(p) = =3 p(x)logp(x).

Here and throughout the paper, lower case letters denote probability densities (for discrete distributions the
density is just the probability mass function) corresponding to the respective distributions. For instance, px
denotes the density of Py, and whenever this causes no confusion, we write p(x) instead of px for sake of
convenience.

The more interesting aspects of algorithmic information, however, are those where the information content
of a string cannot be derived from Shannon entropy. On the one hand, the asymptotic statement on the
information rate blurs the fact that the description length of a typical n-tuple is given by nH (p,) + K (py).
Hence, the description length of the distribution also needs to be accounted for; in order to achieve the
compression length nH (py ) one would need to know py, hence the full description of s, involves also describing
Px [28]. In the context of causal inference it has been pointed out [ 15] that the description length of the joint
distribution of some random variables sometimes also contains information about the underlying causal links
between the variables. Therefore, in causal discovery, restricting attention to Shannon information unavoidably
ignores essential aspects of information.

A second reason why Shannon information is not sufficient for our purpose is that a string may not result
from independent sampling at all. If, for instance, s describes the state of a multi-particle system, the particles
may have interacted and hence the particle coordinates may be correlated. Then, treating the joint state of the
system as if each particle coordinate would have been drawn independently at random overestimates the
description length because it ignores the correlations. In this sense, algorithmic information includes aspects of
information that purely statistical notions of information cannot account for.

In a seminal paper, Bennett [29] proposed to consider K(s) as the thermodynamic entropy of a microscopic
state of a physical system when s describes the latter with respect to some standard binary encoding after
sufficiently fine discretization of the phase space. This assumes an ‘internal’ perspective (followed in parts of this
paper), where the microscopic state is perfectly known to the observer. Although K(s) is in principle
uncomputable, it can be estimated from the Boltzmann entropy in many-particle systems, given that the
microscopic state is typical in a set of states satisfying some macroscopic constraints [17, 29]. That s, in practice
one needs to rely on more conventional definitions of physical entropy.

From a theoretical and fundamental perspective, however, it is appealing to have a definition of entropy that
neither relies on missing knowledge like the statistical Shannon/von-Neumann entropy [30, 31] nor on the
separation between microscopic versus macroscopic states—which becomes problematic on the mesoscopic
scale—like the Boltzmann entropy [32]. For imperfect knowledge of the microscopic state, Zurek [17] considers
thermodynamic entropy as the sum of statistical entropy and Kolmogorov complexity [33], which thus unifies
the statistical and the algorithmic perspectives of physical entropy.

To discuss how K{(s) behaves under Hamiltonian dynamics, notice that the dynamics on a continuous space
is usually not compatible with discretization, which immediately introduces also statistical entropy in addition
to the algorithmic term—particularly for chaotic systems [34]—in agreement with standard entropy increase by
coarse-graining [35, 36]. Remarkably, however, K(s) can also increase by applying a one-to-one map Don a
discretespace [17]. Then K (s) + K (D) is the tightest upper bound for K (D (s)) that holds for the general case.
For a system starting in a simple initial state s and evolving by the repeated application of some simple map D, the
description of s, := D (s) :== D' (s) essentially amounts to describing t and Zurek derives a logarithmic entropy
increase until the scale of the recurrence time is reached [17]. Although logarithmic growth is rather weak [34], it
is worth mentioning that the arrow of time here emerges from assuming that the system starts in a simple state.
We will later argue that this is just a special case of the idea that we propose here, that is, that the initial state is
independent of D. The fact that K depends on the Turing machine could arguably spoil its use in physics.
However, in the spirit of Deutsch’s idea that the laws of physics determine the laws of computation [37], future
research may define a ’'more physical version’ of K by a computation model whose elementary steps directly use
physically realistic particle interactions, see e.g. the computation models in [38—40]. Moreover, quantum
thermodynamics [41] should rather rely on quantum Kolmogorov complexity [42].

Algorithmic randomness in causal inference. Reichenbach’s principle [43] states that every statistical
dependence between two variables X, Y mustinvolve some sort of causation: either direct causation (X causes Y
or vice versa) or acommon cause for both X and Y. Conversely, variables without causal relation are statistically
independent. However, causal relations in real life are not always inferred from statistical relations. Often, one

3
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just observes similarities between single objects that indicate a causal relation. As argued in [15], two binary
words x, y, representing two causally disconnected objects should be algorithmically independent, i.e.

I(x:y);O.

Depending on the context, we will here read the equation sign = in two different ways: for theorems, symbols
like x, y are considered placeholders for strings that can be arbitrarily long. Then = means that the error term
does not grow with the length of the strings (although it does depend on the Turing machine). In a concrete
application where x and y are fixed finite strings, this is certainly meaningless. Then we interpret = by saying that
the error is ‘small’ compared to the complexity of the strings under consideration (provided that the latter are
complex enough). The decision about what ‘sufficiently complex’ means is certainly difficult, but analogue issues
also occur in statistics: rejecting or accepting statistical independence also depends on the choice of the
significance levels (which can never be chosen by purely scientific reasons) since statistical independence actually
refers to an infinite sample limit that is never reached in real-life. For sake of simplicity, we will henceforth just
distinguish between dependent versus independent.

Rephrasing the ideas of [ 15], one could say that algorithmic independence between objects is what typically
happens when objects are generated without causal relations, i.e., without information exchange. To elaborate
on this idea, [16] considers a model where strings are created according to Solomonoff’s prior [44] that is defined
as the distribution of outputs obtained by uniformly randomizing all bits in the infinite input band of a Turing
machine and conditioning on the case that the program halts. It can be shown [45] that this results essentially (up
to factors of order 1) in the following probability distribution on the strings:

plx) =c- 2K,

where cis a normalization constant. Obviously, Solomonoff’s prior assigns higher probability to simple strings.
For this reason, it is often considered as a very principled implementation of Occam’s Razor in the foundations of
learning. Following this prior, if two strings x, y are generated by two independent random processes of this
kind, the pair then occurs with probability

plx, y) = c? - 27K® . =K,
On the other hand, it occurs with probability

p(x, y) =c- Z—K(x>)’)’

when it is generated in a joint process. Thus, I (x : y) = K (x) + K(y) — K (x, y) measures the log of the
probability ratio for the occurrence (after neglecting the constant ¢). In this sense, the amount of algorithmic
information shared by two objects (or, more precisely, by the strings encoding them) can be taken as measuring
the evidence for the hypothesis that they are causally related. Here, one may again object that the dependence of
I (x : y) onthe Turing machine renders the claim at least vague if not useless: x and y can be independent with
respect to one Turing machine but significantly dependent with respect to a second one. Indeed, the asymptotic
statement ‘equal up to a constant’ does not help. Apart from our remarks from above requesting for ‘natural’
Turing machines for the purpose of physics, we mention that [15] discusses that the notion of being causally
connected or not is also relative: assume, for instance, one considers the genomes of two humans. With respect to
a ‘usual’ Turing machine we will observe significant amount of algorithmic mutual information just because
both genomes are from humans. On the other hand, given a Turing machine that is specifically designed for
encoding humans genomes, the mutual information is only significant if the subjects are related apart from both
being humans. Certainly, the fact that they are from the same species is also a causal relation, but if we focus on
causal relations on top of this (i.e., relatedness in the sense of family relations), we should only look at algorithmic
dependences with respect to a Turing machine that has access to the respective background information. In
other words, the fact that algorithmic mutual information is relative fits well to causality being relative as well (in
the above sense).

Reference [15] further elaborates on the idea of using algorithmic dependences to obtain causal information.
It develops a graphical model based framework for inferring causal relations among # objects based on
conditional algorithmic (in)dependences in analogy to conventional causal inference which infers causal graphs
among n variables from conditional statistical (in)dependences [1, 2].

More surprisingly, algorithmic information can also be used to infer whether X causes Y (denoted by
X — Y)or Y causes X from their joint distribution, given that exactly one of the alternatives is true’. If P, and
Prffect|cause are ‘independently chosen by nature’ and thus causally unrelated, [15] postulates that their
algorithmic mutual information is negligible, formally

? The difficult question how well-defined causal directions emerge in physical systems whereinteractions actually imply mutual influence is
discussed for a toy model in [46].




10P Publishing

NewJ. Phys. 18 (2016) 093052 D Janzing et al

+
I(Pcause : Peffectl cause) = 0. (1)

The postulate raises, however, the following questions for practical applications: First, the joint distribution of
cause and effect is not known and can only be estimated from finite data. The estimated distribution may show
dependences between P,y and Prfeci|cause that disappear in infinite sampling. Second, algorithmic mutual
information is uncomputable. For these reasons, the independence postulate has only been used as an indirect
justification of practical causal inference methods. We now describe two examples.

Causal inference for linear models with non-Gaussian noise. First, consider linear non-Gaussian additive noise
models [47]: let the joint distribution Py y of two random variables X, Y be given by the linear model

Y=oaxX+ Ny, 2

where ax € R and Nyis an unobserved noise term that is statistically independent'’ of X. Whenever X or Ny is

non-Gaussian, it follows that for every model of the form X = ay Y + Ny, the noise term Nyand Yare

statistically dependent, although they may be uncorrelated. That is, except for Gaussian variables, a linear model

with independent noise can hold at most in one direction. Within that context, [47] infers the direction with

additive independent noise to be the causal one. To justify this reasoning, [48] argues that whenever (2) holds,

the densities of Pyand Pyy are related by the differential equation
2

0 0? 1 9?2
| -2 - =
dy? osp(Y) y? ogp(ly) ax Ox0Oy

p(xly).

Therefore, knowing Pyy enables a short description of Py. Whenever Py has actually high description length
(which can, of course, only be conjectured but never be proven for the specific case under consideration), we
thusreject Y — X asa causal explanation. It should be emphasized that this justification does not assume that
causal relations in nature are always linear. Instead, the statement reads: whenever the joint distribution is linear
in one direction but not the other, the former is likely to be the causal direction. This is because it would be an
implausible coincidence that R,sc and Parec|cause together generate a joint distribution that admits a linear
model from effect to cause.

Information-geometric causal inference. Second, we consider the toy scenario described in [49, 50]. Assume
that Xand Y are random variables with values in [0, 1], deterministically relatedby Y = f (X)and X = f~1(Y),
where fis a monotonically increasing one-to-one mapping of [0, 1]. If Xis the cause and Y the effect then
Pfect|cause 18 uniquely described by f, while P.yyse|efrect is given by f~!. Hence, applying (1) to this special case
yields

I(py : f) = o. 3)

In trying to replace (3) with a criterion that is empirically decidable, [49] postulates

1 1
[ 1ogfwpdx = [ logf'(x)dx, @
0 0

where f’ denotes the derivative of f. In words, averaging the logarithmic slope of fover px is the same as averaging
it over the uniform distribution. As already observed in [49, 50], (4) is equivalent to uncorrelatedness between
log f/ and py. Here, one interprets both functions x — log f’ and x — p (x) as random variables on the
probability space [0, 1] with the uniform distribution. Then the difference between the left- and the right-hand
side of (4) can be written as the covariance of these random variables:

1 1 1
Cov(logf’,px):f0 logf’(x)p(x)dx—j; logf’(x)dx-j; p(x)dx.

To further justify (3), [50] discusses scenarios where functions fand distributions Py are independently
generated at random in a way that ensures that (4) is approximately correct with high probability. For instance,
Py can be obtained by randomly distributing some peaks across the interval [0, 1]. The same type of process can
be used to generate a monotonic function fat random because the cumulative distribution function of any
strictly positive probability density on [0, 1] defines, as desired, a monotonic bijection of [0, 1]. Stating that (4)
typically holds approximately always relies on strong assumptions on the generating processes for pxand f.
Therefore, (4) is just a pragmatic way to replace algorithmic independence with a computable independence
condition. Intuitively, we consider (4) as stating that some of the peaks of pxlie in regions where fhas large slope,
and some in regions with small slope, such that on the average the expectation of log f' over px does not
significantly differ from the one with the uniform distribution.

One can show [49, 50] that the independence condition (4) implies a dependence for the backwards
direction, i.e., the output density py is positively correlated with f~ v,

19 Note that two variables Z ,» W are called statistically independent if P, ,, = P, By, which is stronger than being uncorrelated,
ie, E[ZW] = E[Z]E[W].
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Cov(logf~", py) >0, 5)

with equality if and only if fis the identity. Hence, the output density py tends to be higher in regions where the
function f~!is steep. This is because the function ‘focuses’ points into regions where the derivative is small. In
that sense, py contains information about the mechanism relating X and Y. Moreover, [49, 50] show that (4)
implies that the Shannon entropies of pyand py satisfy

H(p,) < H(p), ©)

with equality if and only if fis the identify. This information theoretic implication is the main reason, among
others, for stating (4) with log f” instead of just using f. Intuitively, (6) holds because applying fto a density
typically adds additional peaks, which makes the density less uniform. Only functions fthat are adapted to the
specific shape of the density px can make it smoother. As a result, [49] proposes the cause to be the variable with
smaller entropy (subject, for course, to assuming a deterministic relation).

2. Results

A common root for thermodynamics and causal inference. To provide a unifying foundation connecting
thermodynamics and causal inference we postulate:

Principle 1 (Algorithmic independence between input and mechanism). If s is the initial state of a physical
system and M a map describing the effect of applying the system dynamics for some fixed time, then sand M are
algorithmically independent, i.e.,

I(s: M) =o. 7

In other words, knowledge of s does not enable a shorter description of M (and vice versa, with the roles of sand
M interchanged). Here, we assume that the initial state, by definition, is a state that has not interacted with the
dynamics before.

The last sentence requires some explanations to avoid erroneous conclusions. Below we will discuss its
meaning for an intuitive example (see the end of the paragraph ‘physical toy model for a deterministic non-
linear cause-effect relation’). The example will also suggest that states that are independent in the sense that they
‘have never seen the mechanism before’” occur quite often in nature. Note that ‘not seeing the mechanism’ also
excludes a preparation procedure for s that accounts for the length of the time interval the dynamics is active
because this information is, by definition, considered as part of M.

Principle 1 is entailed by the assumption that there is no algorithmic dependence in nature without an
underlying causal relation. By overloading notation, we have identified mechanism and state with their
encodings into binary strings. Principle 1 needs to be taken with a grain of salt. Again, there may be some
information shared by s and M that we do not account for because we call it ‘background’ information. Assume,
for instance, we place some billiard balls on a pool table and give them randomly some momenta. In doing this,
we are aware of the dynamical laws governing the balls, but we may not aware of the exact size of the table. Then,
the latter is the decisive aspect of the dynamics that is algorithmically independent of the initial state. More
generally, we consider the descriptions of M and s, given some background information and postulate
independence conditional on the latter. Although this renders the postulate somehow tautologic, it is still useful
because it has mathematical implications which are non-trivial, although they have to be taken relative to the
respective background information.

To address further potential issues with principle 1, note that generalizations of algorithmic mutual
information for infinite strings can be found in [45], which then allows to apply principle 1 to continuous
physical state spaces. Here, however, we consider finite strings describing states after sufficiently fine
discretizations of the state space instead, neglecting issues from chaotic systems [34] for sake of conciseness.

We should also discuss the question of how to interpret the sign = in this context. For fixed sand M, the
mutual information takes one specific value and stating that they are zero ‘up to a constant term’ does not make
sense. A pragmatic interpretation is to replace ‘up to a constant term’ with ‘up to a small term’, where the
decision of what is considered small will heavily depend on the context. A more principled interpretation is the
following. In continuous space, the binaries describing state and dynamics depend on the chosen discretization.
Then = can be read as stating that the algorithmic mutual information does not increase with finer
discretization.

Dynamics of closed physical systems. Principle 1 has implications that follow from the independence
condition (7) regardless of why the independence holds in the first place. It may hold because the state has been
prepared independently or because some noise has destroyed previous dependences of the state with M.
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Figure 1. Left: cellular automaton starting in a state with small description length. Right: the state s’ obtained from s by application of
the dynamical law D.

Moreover, one could argue for a notion of ‘initial state’ that, by definition, implies that it has been prepared
independently of M and thus, typically, shares no algorithmic information with M.

To show one immediate consequence, consider a physical system whose state space is a finite set S. Assuming
that the dynamics D is a bijective map of S, it follows that the entropy cannot decrease:

Theorem 1 (No entropy decrease). If the dynamics of a system is an invertible mapping D of a discrete set S of states
then principle 1 implies that the algorithmic complexity can never decrease when applying D to the initial state s, i.e.

+
K(D(s)) = K(s). ®

Proof. Algorithmic independence of sand D amounts to K (s) K (s|D*). Since D is invertible, s can be
computed from D(s) and vice versa implying that K (s|D*) K (D (s)|D*). Thus, K (s) Ik (s|D*)
K (D (s)|D*) ; K (D (s)), concluding the proof. O

The proofis very intuitive: if D(s) had a shorter description than s, knowing D would enable a shorter
description of s because one could describe the latter by first describing D(s) and adding the remark ‘then apply
D~V The argument does not really require D to be injective for general states. Instead, it only uses that s can be
uniquely reconstructed from D(s).

Dynamical laws of physical systems are often simple, i.e., have small description length. Yet, principle 1 and
theorem 1 are not pointless because D may also be considered as the ¢-fold concatenation of the same map D,
where D itself has negligible description length. Then, I (s : D) < 0amountsto I (s:1t) = 0. Theorem 1
implies that K (D' (s)) ; K (s) whenever rand s are algorithmically independent. That is, while [17] derives
entropy increase for a simple initial state s, we have derived it for all states s that are independent of £.

To further illustrate theorem 1, consider a toy model of a physical system consistingof n x m cells, each
being occupied or not with a particle, see figure 1. Its state is described by a binary word s with nm digits. For
generic s, we have K (s) ~ nm, while figure 1, left, shows a simple state where all particles are in the left
uppermost corner containing k x Icells. A description of this state s consists essentially of describing k and I (up
to anegligible amount of extra information specifying that k and / describe the size of the occupied region),
which requires log,k + log, [ bits. Assume now that the dynamical evolution D transforms sinto s' = D (s)
where s’ looks ‘more generic’, as shown in figure 1, right. In principle, we cannot exclude that s’ is equally simple
as s due to some non-obvious pattern. However, excluding this possibility as unlike, theorem 1 rules out any
scenario where s’ is the initial state and s the final state of any bijective mapping D that is algorithmically
independent of s’. The transition from sto s’ can be seen as a natural model of a mixing process of a gas, as
described by popular toy models like lattice gases [51]. These observations are consistent with standard results of
statistical mechanics saying that mixing is the typical behavior, while de-mixing requires some rather specific
tuning of microscopic states. Here we propose to formalize ‘specific’ by means of algorithmic dependencies
between the initial state and the dynamics. Here, this view does not necessarily generate novel insights for typical
scenarios of statistical physics, but it introduces a link to crucial concepts in the field of causal inference.

So far, we have avoided to discuss whether the assumption of discrete state space came from the
discretization of a continuous system (which is problematic for reasons mentioned earlier) or from really
focusing on discrete systems. In the former case, despite these issues, theorem 1 still shows that increase of
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Figure 2. Physical system generating a nonlinear deterministic causal relation: a particle travelling towards a structured wall with
momentum orthogonal to the wall, where it is backscattered in a slightly different direction. x and y denote the positions where P
crosses a vertical line before and after the scattering process, respectively.

physical entropy does not necessarily require coarse graining effects. To argue for the latter view, one may think
of a discrete quantum dynamics starting in an eigenstate with respect to some natural basis, e.g., the energy basis,
and also ending up in these basis states. To satisfy principle 1, the basis must be considered as background
information relative to which the independence is stated.

Dynamics of open systems. Since applying (7) to closed systems reproduces the standard thermodynamic law
of non-decrease of entropy, it is appealing to state algorithmic independence for closed system dynamics only
and then obtain conditions under which the independence for open system follows. We will then see that the
independence of P.,yse and Pfrecyjcause €an be seen as an instance of the independence principle for open systems.

Let D be a one-to-one map transforming the initial joint state (s, e) of system and environment into the final
state (s’, e'). For fixed e, define the open system dynamics M : s — s’ If sis algorithmically independent of the
pair (D, e) (which is true, for instance when K(e) is negligible and s and D are independent), independence of s
and M follows because algorithmic independence of two strings a, b implies independence of a, ¢ whenever ¢
can be computed from b via a program of length O(1), see e.g. [15], lemma 6.

Further, we can extend the argument above to statistical ensembles: consider # systems with identical state
space S, each coupled to an environment with identical state space E (where S and E are finite sets, for simplicity).
Let (s; ¢) € S x Ebe the initial state of the jth copy and (s/, /') its final state. Following the standard construction
of Markovian dynamics, we assume statistical independence between the initial state s and the initial
environmental state e. Further, in agreement with the general idea of this paper, we assume also that
s" := (s, ..., 5,) is algorithmically independent’' of (D, ") with e" := (ey, ..., e,). For our statistical ensemble, the
empirical conditional distribution of final sates s/, given the initial state sreads:

p(s'ls) =D _plels) = 3 _ple),

e e

where the sum runs over all ewith D (s, e) = (s/, e’) for some ¢’. The approximate equality holds because of the
statistical independence of sand e, which is approximately also true for empirical frequencies if n is large. Hence,
Pgis determined by s” and Pg/sis (in the limit of large 1) determined by e” and D. We thus conclude that Psand
Pgs are algorithmically independent, because they are derived from two algorithmically independent objects via
aprogram of length O(1). Defining the variable ‘cause’ by the initial state of one copy S and ‘effect’ as the final
state, we have thus derived the algorithmic independence of P.,se and Pifecicause- Notice that it is not essential in
the reasoning above that cause and effect describe initial and final states of the same physical system, one could as
well consider a tripartite instead of a bipartite system.

Physical toy model for a deterministic nonlinear cause—effect relation. To describe a case where principle 1
implies thermodynamic statements that are less standard, we revisit the toy scenario of information geometric
causal inference [49, 50] and observe that (3) implies

+
K(py) = K(py). ©

To see this, we only need to interpret the set of probability distributions as states on which fdefines an invertible
map and (9) follows in analogy to the proof of theorem 1 because px can be uniquely reconstructed for py when f
is known. Thus, if py had a shorter description than py, knowing fwould admit a shorter description of px.
Equation (9) matches the intuition that a distribution typically gets additional peaks by applying the nonlinear
function f. Remarkably, the increase of complexity on the phenomenological level, namely the level of
distributions, is accompanied by a decrease of Shannon entropy. To avoid possible confusion, we should

1 Note that this is stronger than assuming independence of s;and (D, ¢;) for every single component becausewe have thus also excluded
algorithmic dependences between s and e, which get only apparent when looking at the whole ensemble.




10P Publishing

NewJ. Phys. 18 (2016) 093052 D Janzing et al

emphasize that the process f, although it is a bijection, is not a ‘reversible process’ in the sense of thermodynamics
because the latter term refers to maps that are locally volume preserving in phase space and thus preserve
Shannon entropy. To further clarify this point, we now describe a simple physical system whose dynamics yields
the function fwhen restricted to a certain part of the physical phase space. The decrease of Shannon entropy is
then perfectly consistent with the conservation of Shannon entropy for the entire system, in agreement with
Liouville’s theorem.

Figure 2 shows a simple two-dimensional system with a particle P travelling towards a wall W perpendicular
to the momentum of P. P crosses aline L parallel to W at some position x € [0, 1]. Let the surface of Wbe
structured such that P hits the wall with an incident angle that depends on its vertical position. Then P crosses L
again at some position y. Assume that L is so close to W that the mapping x — y =: f (x) is one-to-one. Also,
assume that 0 is mapped to 0 and 1 to 1. Let the experiment be repeated with particles having the same momenta
but with different positions such that x is distributed according to some probability density px. Assuming
principle 1, the initial distribution of momenta and positions does not contain information about the structure
of W. Due to theorem 1, the scattering process thus increases the algorithmic complexity of the state. Further,
this process is thermodynamically irreversible for every thermodynamic machine that has no access to the
structure of W. Hence, the entire dynamical evolution is thermodynamically irreversible when the structure of
Wis not known, although the Shannon entropy is preserved.

Let us now focus on a restricted aspect of this physical process, namely the process that maps px to pyvia the
function f, so we can directly apply the information-geometric approach to causal inference [49]. Now we
conclude (9) because restricting the attention to partial aspects of two objects cannot increase their mutual
information, see e.g., [15]. This illustrates, again, that we can either conclude (9) by applying principle 1 directly
to f, or, alternatively, we could state the principle only for the dynamics of the closed system and derive (9) by
standard arguments of algorithmic information theory. Intuitively speaking, we expect py to contain
information about the wall. On the one hand, we already know that (4) implies that py correlates with the
logarithmic slope of f, due to (5). On the other hand, we can also prove that py contains algorithmic information

about fprovided that K (p,,) is properly larger than py. This is because independence of py and fwould imply
+
independence of pyand f~!and then we could conclude K (py) > K (Py) by applying the above arguments to

f~'instead of f. Certainly, particles contain information about the objects they have been scattered at and not
about the ones they are going to be scattered at. Otherwise a photographic image would show the future and not
the past. In this sense, the observations trivially fit to the usual arrow of time. What may be unexpected according
to standard thermodynamics is, as already mentioned, the decrease of Shannon entropy (6), which could lead to
misleading conclusions such as inferring the time direction from pyto px. Thus principle 1 is of particular
relevance in scenarios where simple criteria like entropy increase/decrease are inapplicable, at least without
accounting for the description of the entire physical system (that often may be not available, e.g., if the
momentum of the particle is not measured). The example above also suggests how the algorithmic
independence could provide a new tool for the inference of time direction in such scenarios.

One could certainly time reverse the scenario where pyis the particle density of the incoming beam while px
corresponds to the outgoing beam. Then, the incoming beam already contains information about the structure
of the surface it is scattered at later. We now argue how to make sense of principle 1 in this case. Of course, such a
beam can only be prepared by a machine or a subject that is aware of the surface structure and directs the
particles accordingly. As a matter of fact, particles who were never in contact with the object cannot ‘a priori’
contain information about it. Then principle 1 can be maintained if we consider the process of directing the
particles as part of the mechanism and reject the idea of calling the state of the hand-designed beam an ‘initial’
state. Instead, the initial state then refers to the time instant before the particles have been given the fine-tuned
momenta and positions.

Arrow of time for an open system in the real world. So far, we have provided mainly examples that help fora
theoretical understanding of the common root of thermodynamics and causal inference. Apart from discussing
the foundations for both fields, the independence principle aims at describing the arrow of time for systems for
which itis not obvious how to derive asymmetries between past and future from standard thermodynamics.

As one such example, reference [52] considers audio signals from a piece of music and its echo at different
places of a building and addresses the task of inferring which one is the original signal and which one its echo. On
the one hand, one can consider this task as part of causal inference with the echo being the effect of the original
signal, asin [52]. On the other hand, the problem is arguably related to the arrow of time since the echo comes
later than its original signal. Here, it would be hard to infer the time direction from entropy arguments: even if
one manages to define a physical system like the air that carries the signal, one could hardly keep track of the
entropy contained in the entire system. The independence principle, on the other hand, does not have to account
for entropies of the entire system in order to infer the time direction. To show this, we first rephrase some results
from [52] and then discuss future directions using the principle of algorithmic independence.

9
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Assume the input signal is represented by the discrete time series (X, );cz with real-valued X, and the output
signal (the echo) (Y} ),cz is obtained from the input via convolution with the impulse response function h:

Y, = Zh(j)Xt—j~
j

In the frequency space, this amounts to multiplying the Fourier transforms of X and Y with the impulse response
function h:

N ~ N 1 1
Yw)=h) -Xv) Vve [_E’ E]’

where the Fourier transform is defined by

X(l/) = ZefiZm/tXt
teZ
and likewise for ¥ and /. In [52] it is then postulated an independence principle stating that the power spectrum
|X[? and |12 do not correlate, i.e., that

(197 ~ (IXP) - (1AP), (10)
where (-) = fj 1//22 - dv denotes the expectation over all frequencies. A hypothetical model where (Y;),., is the
cause and (X, ),z the effect then assumes a mechanism whose impulse response function is 1/h. The absolute
square of the latter is necessarily negatively correlated with Y as one can easily show (apart from non-generic
exceptions) [52]. Intuitively, this is because Y tends to have high amplitudes for those frequencies for which
|ﬁ (v) [ islarge and hence 1 / |fl (v)|? is small. In this sense, independence between cause and mechanism in causal
direction implies dependence between effect and mechanism, in close analogy to the Information Geometric
setting above.

Although the so-called spectral independence criterion (SIC) in (10) turned out to be helpful for the
experiments performed in [52], it is not hard to see its limitations: assume, for instance, that both X (v)and
h (v) mainly contain power in the region of frequencies that are close to zero. This fact alone does not show that
they contain significant amount of information about each other. After all, it is the typical behavior of any time
series that is not fractal that the power decays quickly for frequencies far away from zero (for sufficiently fine
time discretization). Future research for more sophisticated independence criteria than (10), which are not
mislead by those kind of dependences that occur without causal dependence between input and mechanism,
could be guided by principle 1.

Accordingly, the basic postulate then amounts to

1X:h=o.

We then obtain

K& < K(d) <K®) + K@),

where the first inequality follows, again in analogy to the proof of theorem 1 and the proof of (9), and the second
one holds because ¥ can be computed from X and / by a program of length O(1). In the generic case, K (¥) will
thus be larger than K (X) and we infer the more complex signal to be the echo, which provides a well-defined
arrow of time. As a further aspect of this asymmetry between past and future, 1/hand ¥ cannotbe independent
because applying theorem 1 in backwards direction would then imply K (X) ; K (Y). Although algorithmic
complexity is uncomputable, it is not hopeless to approximate it by compression schemes that are appropriate
for specific tasks, see e.g. [53].

3. Discussion

Already Reichenbach linked asymmetries between cause and effect to the arrow of time when he argued that the
statistical dependence patterns induced by causal structures X «— Z — Y (common cause)
versus X — Z « Y (common effect) naturally emerge from the time direction of appropriate mixing processes
[43]. In this work we provide a new foundational principle describing additional asymmetries that appear when
algorithmic rather than only statistical information is taken into account. As a consequence it follows naturally
the non-decrease of entropy (if the latter is identified with algorithmic complexity) and the independence
between P,yse and Erffect|cause> thus providing further relations between thermodynamics and causal inference.
Non-Markovian dynamics. Intuitively, our principle resembles the standard way to obtain Markovian
dynamics of open systems, coupling a system to a statistically independent environment [54]. In this sense, our
principle can be understood as a notion of Markovianity that is stronger in two respects: first, the initial state of
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Figure 3. Left: pure ause-effect relation without common cause. Right: cause—effect relation that is confounded by a common cause.

the system is not only statistically but also algorithmically independent of the environment, and second, it is also
algorithmically independent of the dynamical law. It thus provides a useful new rationale for finding the most
plausible causal explanation for given observations arising in study of open systems. It is known, however, that
non-Markovian dynamics is ubiquitous. As argued in [55], for instance, the dynamics of a quantum system
interacting strongly with the environment is not Markovian because it does not start in a product state. Instead,
initial state of system and environment already share information. At least for these cases, we will also expect
violations of principle 1. It should be emphasized, however, that also for non-Markovian systems (for which the
initial state has not been prepared independently of the environment) one is sometimes interested in the
question of what would happen to an input state if it was prepared independently. This perspective becomes
particularly clear by discussing analogies between non-Markovian dynamics and the phenomenon of
confounding in the world of statistics and causal inference [2].

To explain this, consider just two variables X and Y where the statistical dependence is entirely due to the
causal influence of X on Y. The corresponding causal relation is visualized in figure 3, left. For this relation, the
observed conditional distribution Py x can be interpreted as describing also the behavior of Y under
interventions on X. Explicitly, Py|x—, is not only the distribution of Y after we have observed that X attains the
value x. Instead, it also decribes the distribution of Y given that we set X to the value x by an external intervention.
Using similar language as in [2], we write this coincidence of observational and interventional probabilities as

Py|x—x = Pyjdo(x=x)-

On the other hand, if the dependence between X and Y'is only partly due to the influence of X on Ybutalso due to
the common cause Zas in figure 3, right, setting X to the value x yields a different distribution than observing the
value x, i.e.

Pyix=x = Py|dox=x)
On can show [2] that the interventional probability can then be computed via

pyldo(x)) = p(ylx, 2)p(2) = D _p(ylx, 2)p(2lx) = p(ylx). (11)

z z

Assume, for instance, one observes a correlation between taking a medical drug (variable X) and recovery
from a disease (variable Y). Let say, the correlation is partly because the drug helps and partly because women
take the drug more often than men and are, at the same time, more likely to recover. The question of whether it is
worth to take the drug needs to be based on Py 4, (x—x)> not on Py x. If the data base contains information on the
gender Z, we can adjust for this confounder using (11) and obtain the interventional probabilities from the
observational ones. Otherwise, finding Py 4, (x—x) requires randomized experiments. This example shows that
although the input x is in fact not independent of the mechanism relating X and Y, we are interested in the
question what would happen if we made it independent. Markovian and non-Markovian systems can be seen as
the physical analogs of figure 3, left and right, respectively: a system is non-Markovian because the future state of
the system is not only influenced by the present state but also by some common history or state of the
environment. Like in the case of random variables, for a non-Markovian system we may be interested in what
would happen for a ‘typical’ input state, that is, one that is prepared independently of the state of the
environment and the dynamics.

Going back to the causal inference world, we should emphasize that algorithmic independence of Pxand
Py|x has only been postulated for the causal relation in figure 3, left, and not for the confounded scenario on the
right hand side. Accordingly, confounding may be detected by dependences between Px and Py, x [15]. Likewise,
for physical systems, dependences between a state and dynamics may indicate non-Markovian dynamics'*.

More generally speaking, algorithmic information has also attracted interest for the foundations of physics
recently. For instance, given the recent connections between the phenomenon of quantum nonlocality [56] with

12 . .. .1
For quantum systems, note that [13] discusses a condition that can also indicate common causes.
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algorithmic information [57, 58] and causality [7—13], our results may also point new directions for research in
the foundations of quantum physics.
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