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Abstract— Object grasping and manipulation pose major
challenges for perception and control and require rich interac-
tion between these two fields. In this paper, we concentrate on
the plethora of perceptual problems that have to be solved
before a robot can be moved in a controlled way to pick
up an object. A vision system is presented that integrates a
number of different computational processes, e.g. attention,
segmentation, recognition or reconstruction to incrementally
build up a representation of the scene suitable for grasping
and manipulation of objects. Our vision system is equipped
with an active robotic head and a robot arm. This embodiment
enables the robot to perform a number of different actions like
saccading, fixating, and grasping. By applying these actions,
the robot can incrementally build a scene representation and
use it for interaction. We demonstrate our system in a scenario
for picking up known objects from a table top. We also show
the system’s extendibility towards grasping of unknown and
familiar objects.

I. INTRODUCTION

The process of grasping an object both in humans and
robots is a research topic that opens up the possibility to
study many related sub-problems. One of the open question
is how to grasp a specific object. Inspired by the theory
of affordances [1], different object centered strategies have
been proposed. If the object is known, an already known
action can be applied to it [2], [3], [4], [S]. If the object
is similar to a known object, experience can be re-used for
grasp synthesis [6], [7], [8], [9]. An unknown object needs
to be analyzed in terms of its 3D structure and other physical
properties from which a suitable grasp can be inferred [10],
[11], [12], [13].

Object grasping in realistic scenarios requires more than a
pure decision of where to put fingers: it requires a whole set
of processing steps whose purpose is to achieve an under-
standing of the scene that a robot is facing, thus obtaining
object hypotheses. Once this is done, the aforementioned
approaches can be exploited. The general requirement for a
system that implements such a grasping process is robustness
in a real world situation without too many assumptions.

In this paper, we present a vision system that integrates
different computational processes to incrementally build a
scene representation suitable for object grasping and ma-
nipulation. The hardware components are the Armar III
robotic head [14] and a 6 DoF Kuka arm [15] equipped
with a Schunk Dexterous Hand 2.0 (SDH) [16] as shown
in Figure 1. This embodiment enables the robot to perform
a number of actions like saccading, fixating, and grasping.
By applying these actions, the robot can extend its internal
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(b) Kuka Arm and Schunk Hand.

Fig. 1.

Hardware Components of the Grasp Inference System

scene representation as well as interact with the environment.
Compared to similar embodied active vision systems, our
main contribution consists of an offline hand-eye calibration
procedure whose accuracy enables us to produce dense stereo
reconstructed point clouds of segmented objects. We will
demonstrate the proposed system in a table-top scenario
containing known objects. Furthermore, an outlook will be
given on how the same integrated active vision system can
be used for a more complex task like picking up unknown
objects.

The structure of the paper is as follows. After discussing
the related work in the next section, we give a general system
overview in Section III. This is followed by a more detailed
presentation of the individual modules. Qualitative results
for the scenario of picking up known objects are shown in
Section IV.

II. RELATED WORK

Vision based grasping of known objects has been studied
a lot. Here, we will focus on the work by Huebner et.
al [3] and Ude et. al [17] who are using a similar robotic
platform to ours [4] including an active head. In [3], the
Armar IIT humanoid robot is enabled to grasp and manipulate
known objects in a kitchen environment. Similar to our
system, a number of perceptual modules are at play to
fulfill this task. Attention is used for scene search. Objects
are recognized and their pose estimated with the approach
originally proposed in [5]. Once the object identity is known,
a suitable grasp configuration can be selected from an offline
constructed database. Here, a box-based approach is used in
which the object shape is approximated by a constellation
of boxes. Thereby, the number of candidate grasps for one



object is limited to just a few [10]. Visual servoing is applied
to bring the robotic hand to the desired grasp position [18].
Different from our approach, absolute 3D data is estimated
by fixing the 3 DoF for the eyes to a position for which a
stereo calibration exists. The remaining degrees of freedom
controlling the neck of the head are used to keep the target
and current hand position in view. In our approach, we keep
the eyes of the robot in constant fixation on the current object
of interest. This ensures that the left and right visual field
overlap as much as possible, thereby maximizing e.g. the
amount of 3D data that can be reconstructed. It has also
been shown that some cues, like shape and motion can be
easier derived in fixation [19], [20]. However, the calibration
process becomes much more complex.

In the work by Ude et. al [17], fixation plays an integral
part of the vision system. Their goal is however somewhat
different from ours. Given that an object has been already
placed in the hand of the robot, it brings it in front of its eyes
and rotates it in a controlled movement. By this it gains sev-
eral views from the currently unknown object for extracting
a view-based representation that is suitable for recognizing it
later on. Different to our work, no absolute 3D information
is extracted for the purpose of object representation.

In [21], the authors presented a method for calibrating the
active stereo head. The correct depth estimation of the system
was demonstrated by letting it grasp an object held in front
of its eyes. No dense stereo reconstruction has been shown
in this work.

Similarly, in [22] a procedure for calibrating the Armar
IIT robotic head was presented. Our calibration procedure
is similar to the one described in those papers, with a few
differences. We extend it to the calibration of all joints,
thus obtaining the whole kinematic chain. Also, the basic
calibration method is modified to use an active pattern
instead of a fixed checkerboard, which has some advantages
that we outline below.

III. SYSTEM ARCHITECTURE

In this section, we provide a system overview. Its individ-
val building blocks are described in more detail below. An
overview of the system is shown in Figure 2.

First, there are processes for the purpose of incrementally
building up a scene representation. This representation con-
tains the detected table plane, the position of the Kuka robot
arm relative to the robotic head and a number of detected
object hypotheses.

The emergence of these hypotheses is triggered by the
visual exploration of the scene with the ARMAR III robotic
head [14]. It has 7 DoF and is equipped with two stereo
camera pairs, a wide-angle and a narrow-angle one. The
former are used for peripheral vision in which scene search
can be performed. This is done by computing a saliency
map and assuming that maxima in this map are initial object
hypotheses, [4]. A saccade is performed to a maxima such
that the stereo camera with the narrow-angle lenses center on
the potential object. Once the system is in fixation, a disparity
map is calculated and segmentation performed [23].

The result of this part of the system is a geometric model
of the scene. Assuming a tasks such as to clean the table,
different grasping strategies can be applied based on the
available knowledge about the object. In this paper, we will
demonstrate grasping of known objects. For this purpose,
we assume a database containing scale invariant features
(SIFT) [24], color co-occurrence histograms (CCH) [25], an
approximate shape model and grasps for a number of objects.
For deciding whether an object hypothesis is a specific
object, SIFT and CCH based recognition is performed. The
approximate shape model and pre-defined grasp help to
decide the exact arm and hand configuration to pick up the
object. Visual servoing is then used to guide the arm and
hand to the correct pre-grasp and final grasping position.

A. Offline Calibration

Though the use of visual servoing for grasping allows for
reasonable results with limited calibration, it is still desirable
to have the cameras accurately calibrated. Stereo calibration
is necessary for image rectification prior to calculating the
disparity map. Head-eye calibration is necessary for perform-
ing the saccade that brings the detected attention point to
the center of the narrow-field cameras. And finally, some
hand-eye calibration is necessary for the visual servoing
method that we are using. This leaves us with three kinds
of transformations that we need to determine: (i) the trans-
formation between the left and the right camera coordinate
systems for a given configuration of the joints; (ii) the
transformation between one camera system in two different
joint configurations; and (iii) the transformation between the
camera coordinate system and the arm coordinate system.

1) Stereo Calibration: One of the most commonly used
methods for finding the transformation between two camera
coordinate systems is the use of a checkerboard which
is observed by two cameras (or the same camera before
and after moving) [26]. The checkerboard defines its own
coordinate system. By detecting the intersection between the
squares, it is possible to find the transformation from this
coordinate system to the left and right camera coordinate
system. Once we have this transformation, it becomes easy
to obtain the transformation between the left and right camera
coordinate systems.

For the purposes of our experiment, we used a modified
version of this method. Instead of using a static checkerboard
pattern, we used a small LED rigidly attached to the end
effector of the robotic arm, which we moved describing a
certain pattern. Because of the accuracy and repeatability of
the KUKA arm (< 0.5mm) and the sub-pixel precision for
the detection of the LED in camera space, we can obtain
results that are at least as accurate as those obtained by
the use of traditional checkerboard patterns, with several
advantages:

« Instead of using an arbitrary checkerboard coordinate
system as the intermediate coordinate system, we can
use the arm coordinate system. So at the same time
that we are performing the stereo calibration, we are
obtaining the hand-eye calibration for free.
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Fig. 2.

o With a static pattern, it is necessary to use the same
checkerboard at the same position for the two camera
coordinate frames for which we are trying to obtain
the transformation. This means that the pattern must
be within the field of view for the two poses of the
camera, which may be difficult when the two poses are
not similar. With our approach, it is not necessary to
use exactly the same end effector positions for the two
camera coordinate systems, since any set of points will
allow us to obtain the transformation between the arm
coordinate system and the camera coordinate system.

o For these same reasons, we found empirically that this
approach makes it possible to choose a pattern that
offers a better calibration performance. For example,
by using a set of calibration points that is uniformly
distributed in image space (as opposed to world space,
which is the case for checkerboard patterns), it is pos-
sible to obtain a better characterization of the distortion
parameters of the lenses. To create this kind of pattern,
we bring the LED to the center of the foveal image.
By moving the LED to a series of points that are on a
plane perpendicular to the principal axis of the camera,
we form a uniform and comprehensive pattern in image
space of the foveal cameras. We repeat this process at
different distances from the camera, and we end up with
a collection of calibration points that effectively fill the
image space and a range of depths. The shape of this
calibration pattern forms a truncated pyramid in world
space.

2) Head-eye Calibration: For a static camera setup, the
calibration process would be completed here. However, our

Overview of the system.

vision system can move to fixate on the objects we manip-
ulate. Therefore it is important to obtain a calibration that
remains valid after these movements. The Armar III head
has 7 DoF: three for the neck, two common tilt joints, and
one for the pan of each camera. Only these last two joints
allow for independent movement of one camera with respect
to the other, so they are the only ones which will affect the
stereo calibration.

Ideally, it would be possible to obtain the exact transforma-
tion between the camera coordinate system before and after
moving a certain joint just from the known kinematic chain
of the robot and the readings from the encoders. However,
inaccuracies arise in the manufacturing process influencing
the true center and axis of joint rotations and in the dis-
crepancy between motor encoder readings and actual angular
joint movement. There are also some repeatability issues that
cannot be dealt with by means of offline calibration. The use
of visual servoing as described in Section III-D.3 and online
calibration as described in Section III-B.2 tries to reduce the
impact of these. However, we have found that our method
provides an acceptable estimation of the hand-eye and head-
eye calibration at all times.

Our method consists of performing the following steps for
each of the joints:

1) Choose two different positions of the joint, that are far
enough apart to be significant, but with an overlapping
viewing area that is still reachable for the robotic arm.

2) For each of these two positions, perform the static
calibration process as described above, so that we
obtain the transformation between the arm coordinate
system and each of the camera coordinate systems.



(a) Left Wide Field Camera. (b) Saliency Map on Left Wide

Field Camera.

Fig. 3. Example Output for Attention Process on Wide Field Images.

3) Find the transformation between the camera coordinate
systems in the two previously chosen joint configura-
tions. This transformation is the result of rotating the
joint around some roughly known axis due to mechani-
cal inaccuracies, with a roughly known angle from the
motor encoders. From the computed transformation,
we can then more exactly determine this axis, center
and angle of rotation.

After performing this process for all the joints, we can
use the result to rebuild the kinematic chain of the head, in
a way that takes into account the deviations in the axis and
centers of rotation resulting from the manufacture process.

B. Building up the Scene Representation

In the following section, we briefly present the compu-
tational modules needed for forming a model of the scene
(see left part of Figure 2). For a more detailed description,
we refer to our previous work [4], [23], [19].

1) Attention: As mentioned in Section III, our vision
system consists of two stereo camera pairs, a peripheral
(Figure 3(a)) and a foveal one (Figure 4(a)). Scene search is
performed in the wide-field camera by computing a saliency
map on it. An example for such a map based on the Itti &
Koch Saliency model [27] is given in Figure 3(b). Peaks in
this saliency map are used to trigger a saccade of the robot
head such that the foveal cameras are centered on this peak.

2) Fixation: When a rapid gaze shift to a salient point in
the wide-field is completed, the fixation process is immedi-
ately started. The foveal images are initially rectified using
the camera parameters obtained from the offline calibration
described in Section III-A. This rectification is then refined
online by matching Harris’ corner features extracted from
both views and computing an affine essential matrix. The
resulting images are then used for stereo matching [28]. A
disparity map on the foveal image in Figure 4(a) is given in
Figure 4(c). The vergence angle of the cameras is controlled
such that the highest density of points close to the center of
the views are placed at zero disparity.

3) Segmentation: For 3D object segmentation, we use a
recent approach [23] that relies on three possible hypotheses:
figure, ground and a flat surface. The commonly made flat
surface assumption simplifies the problem of segregating an
object from the surface it stands on, when both are very
similar in appearance.

(a) Left Foveal Camera. (b) Segmentation on Overlayed
Fixated Rectified Left and Right

Images.
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(c) Disparity Map.

(d) Segmented Image and Recog-
nition Result. Five best matching
objects are shown in the table.

Fig. 4. Example Output for Processes running on Foveal Images.

The segmentation approach is an iterative two-stage
method that first performs pixel-wise labeling using a set
of model parameters and then updates these parameters in
the second stage. In our case, these parameters are color
and disparity information. Model evidence is summed up
on a per-pixel basis using marginal distributions of labels
obtained with belief propagation. For initialization, we place
an imaginary 3D ball around the fixation point and label
everything within the ball as foreground. RANSAC [29] is
used for finding the most dominant plane. Points that belong
to it are labeled as table. The remaining points are initially
labeled as background.

4) Re-Centering: The attention points coming from the
saliency map on wide-field images tend to be on the border
of objects rather than on their center. Therefore, when
performing a gaze shift, the center of the foveal images
does not correspond to the center of the objects. We perform
a re-centering operation to account for this. This is done
by letting the iterative segmentation process stabilize for a
specific gaze direction of the head. Then the center of mass of
the segmentation mask is computed. A control signal is sent
to the head to correct its gaze direction such that the center of
the foveal images is aligned with the center of segmentation.
After this small gaze-shift has been performed, the fixation
and segmentation process is started again until the center of
the segmentation mask is sufficiently aligned with the center
of the images.

An example for the resulting segmentation is given in
Figure 4(b), in which the object boundaries are drawn on
the overlayed left and right rectified images of the foveal
cameras. The segmented point cloud calculated from the
segmented disparity map is depicted in Figure 5.



(b) Point cloud of mango can and fitted cylinder

Fig. 5. 3D Point Cloud (from two Viewpoints) and Estimated Object Pose
generated from Disparity Map and Segmentation in Figure 4(c) and 4(b).

C. Grasping Known Objects

Once a scene model with a number of object hypotheses
has been obtained, they can be further analyzed. In this paper,
we consider the problem of cleaning a table containing an
unknown number of known objects in an unknown configu-
ration. To be able to remove them from the table, we need
to determine their identity and pose.

1) Recognition: The identity of an object hypothesis is
sought in a database of 25 known objects. Two complemen-
tary cues are used for recognition; SIFT and CCH. The cues
are complementary in the sense that SIFT features rely on
objects being textured, while CCH works best for objects of
a few, but distinct, colors. An earlier version of this system,
including a study on the benefits of segmentation for recog-
nition, can be found in [19]. Here, the total recognition score
is the product of the number of matched SIFT features and
the CCH correlation score. An example of the recognition
results is shown in Figure 4(d).

2) Registration: If an object is identified and it is known
to be either rectangular or cylindrical, the pose is estimated
using the cloud of extracted 3D points projected onto the
2D table plane, with object dimensions given by a lookup
in the database. For rectangular objects a dominating plane
is initially sought using random sampling of 3D points
(RANSAC) and least median optimization. The orientation
of this plane gives an initial estimate of the orientation and
position of the object on the table. Next the pose estimate
is improved by minimizing the sum of absolute errors from
each individual object point projected onto the table to the
closest edge of the rectangular model (see Figure 5(a) for an
example). This is efficiently done using a 2D distance map
and gradient descent. Similarly, the position of a cylindrical

object is determined through random sampling and least
median optimization, followed by distance map based fitting,
using its known radius and the assumption that the object is
standing upright. An example for a fitted cylinder is shown
in Figure 5(b).

3) Choosing a Grasp Configuration: This paper focuses
on the perceptual problems that arise prior to the actual
picking up of an object. We therefore simplified the search
for possible grasp configurations to only those ones from the
top. Given an object identity and a pose of the object, we
can determine the desired pre-grasp shape, position and wrist
orientation of the end effector.

The pre-grasp shape is chosen dependent on whether the
object is rectangular or cylindrical. In the former case, we
choose a pinch grasp with the thumb opposing the two
other fingers. For a cylindrical object, the rotation between
the two neighboring fingers of the SDH is increased to
achieve a spherical pre-grasp shape. The position of the
hand is influenced by the known height of the object and
its position on the table. This will be clarified further below
in Section III-D.2.

The wrist orientation is dependent on the estimated object
pose. If it is rectangular, then the vector between the thumb
and the two opposing fingers is aligned with the minor axis
of the rectangle. If it is spherical, then the wrist orientation
does not matter and we use a predefined wrist orientation.

D. Moving the arm

The previous components provide all the information
needed to initiate the actual grasping process. This infor-
mation has all been obtained from visual input, and is thus
expressed in the camera coordinate system. This makes it
adequate to use a visual servoing approach.

1) Tracking the hand: In a pure visual servoing approach,
we would estimate the position and orientation of one or
more relevant parts of the hand (e.g. the fingertips) and
use the control loop to bring them to the grasping points,
which would also be visually detected. This would require
a complete tracking of the robotic hand. We simplify this
complex problem by choosing an LED near the wrist of the
hand as a single point that can be robustly tracked. This
is similar to the approach in [18] in which a red marker
ball mounted on the wrist of the robotic arm is used as a
reference.

2) The grasping point: As mentioned before, we are
only considering top grasps at the current iteration of the
system, so the trajectory of the arm (not including the wrist
orientation joint) can be totally determined by a single point,
the point around which the hand closes. For the visual
servoing implementation, we need to determine this grasping
point in image space. To do that, we take into account that
after the iterative fixation, segmentation and re-centering
process, the center of the object will be in the center of
each image in both wide-field cameras. Having recognized
the object, we also know its height from a database look-
up. From this information, we can determine the position
of the hand above the grasping point. From the kinematic



calibration, we can transform the center of the image to
the head coordinate system, add the height correction and
transform it back to image coordinates.

3) Visual servoing: Following the same procedure we
used to add the height correction, we add the distance from
the LED (we use as a reference) to the position above the
grasping point, which provides us with the target position
for the LED.

We then use an image-based visual servoing control
scheme to move the hand in the direction that reduces
the distance between the LED and the target position. Our
approach is a simplified version of the method presented
in [18] in which more than just top grasps are considered.
For determining the target position of their reference point in
image space also the orientation of the end effector as read
from the motor encoders is taken into account.

4) The whole process: The visual servoing stage allows
us to increase the accuracy of the process by using visual
feedback to position the hand prior to grasping. Thereby the
inaccuracies associated to calibration and mechanical error
are circumvented. The complete grasping process includes
the following steps:

1) Move the arm to a position and orientation that renders
the LED visible in both cameras.

2) Use visual servoing to position the hand above the
grasping point as shown in Figure 6(a).

3) Rotate the arm to the wrist orientation provided by the
pose estimation. See Figure 6(b).

4) Move the hand down in a vertical movement, until it
reaches the grasping point.

5) Close the hand using the selected pre-shape as shown
in Figure 6(c).

6) Lift the object, using another vertical movement, and
move it away to some pre-established destination po-
sition. where the hand is opened again and the object
dropped. Examples of this are shown in Figure 6(d)
to 6(f)

IV. EXPERIMENTS

In this paper, we are demonstrating the presented system
fulfilling the task of grasping known objects from a table top.
We will only show qualitative results in form of a video [30]
from a whole run. Stills of this run are given in Figure 6.

Quantitative results as for example the evaluation of ac-
curacy of the calibration remain future work.

A. Setup

An example for the experimental setup including robotic
arm and head can be seen in Figure 6(a). Here a subset
of 4 objects from the 25 known ones has been selected
and randomly spread on the table. Since we are not using
closed loop grasp execution in this system, we make the
assumption that objects are well separated on the table.
Thereby we ensure that the hand is not colliding with an
object while picking up its neighbor. Furthermore, we assume
that cylinders are standing upright.

B. Results

1) Calibration: In Figure 5 we have already shown
segmented point clouds that were the results from stereo
matching on rectified images. The rectification was achieved
by bootstrapping the online calibration with initially rectified
images based only on calibration parameters from the offline
calibration.

In Figure 7, we show two typical example for point clouds
comprising a whole scene. They are merged from separate
point clouds that were reconstructed from different view
points (five in these cases). This is an illustration of the
accuracy of the offline head-eye calibration process.

2) Grasping: As we can see in the video, the system
is consistently able to perform its task in the relatively
controlled environment we are using. There are some cir-
cumstances under which the grasp process may fail. For
example, it is difficult to fixate on cylinders, because there
is not a dominant plane in disparity space. This can cause
the grasping position to be slightly off.

Our segmentation approach has been shown to be robust
even if the object is moving and kept in fixation during that
movement, [20]. However, the most critical phase for any
iterative scheme for figure-ground segmentation is initializa-
tion. In our case, this was dependent on the fixation point.
If the gaze shifts to a point that is too close to the border
of the object, parts of the background will be initialized as
foreground. Then it might happen that the system tries to
segment the background instead of the object, which makes
the segmentation wander away from the object.

This has not proven to be a significant problem for the
normal operation of the system. However, as future work,
we aim at performing a quantitative evaluation of each of the
components of the system and thereby of the whole grasping
process.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an active vision system capable
of forming a 3D scene representation and picking up known
objects.

Several assumptions have been made, e.g., that the objects
belong to a set of known objects or that they are standing on a
flat surface. The modular design of the system allows for the
replacement of individual parts with functionally equivalent
modules that can remove some of these assumptions.

The pose estimation described in Section II-C.2 is sim-
ple and effective in our scenario, but introduces several
assumptions. Objects are for example approximated with
either boxes or cylinders in which cylinders are assumed to
be always standing upright. Since we are able to densely
reconstruct point clouds, approaches for pose estimation
like [31] are feasible. This would offer more flexibility in
terms of object pose and more robustness against object
occlusion. However, exact models of the known objects are
needed.

Grasping of unknown objects is a much more challenging
task compared to grasping known objects. Several research
groups have considered this problem and usually take the 3D



(a) Positioning Arm Above Object.

sition.

(b) Moving Arm Down to Pre-Grasp Po-

(d) Lifting Object.

(e) Moving Object to Target Position.

(f) Release Object at Target Position.

Fig. 6. Example Grasp for the recognized Tiger. The whole table being emptied is shown in [30].

structure of an object hypothesis into account for inferring
a grasp, [10], [11], [13]. In our vision system, none of
the modules that are responsible for building up the scene
representation are dependent on any prior knowledge on ob-
jects (see Figure 2). Therefore, this representation is general
enough to serve as an input to methods like [10], [11] that
rely on segmented point clouds.

As we explained in Section III-D.3, using a simple marker
such as the LED for visual control provides good results for
this system. However, it is a simplification in which the LED
is not allowed to be occluded or out of view. Furthermore, it
does not scale well to situations where a more precise control
over the grasp process is needed. A significant improvement
would be to estimate the position and orientation of the
robotic hand. Together with the known hand geometry, this
would allow us to know the position, in image space, of the
relevant parts of the hand, and use a pure visual servoing
approach to bring these parts to the desired points.

The accuracy of the offline calibration process makes it
possible to integrate the point clouds obtained from different
saccades into a large point cloud that represents the whole
scene (see Figure 7 for an example). This point cloud can be
fed into a simulator, which would then be used to perform
grasp, path and trajectory planning.
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