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Abstract

Deep generative models such as Generative Ad-
versarial Networks (GANs) and Variational Auto-
Encoders (VAEs) are important tools to capture
and investigate the properties of complex empiri-
cal data. However, the complexity of their inner
elements makes their functioning challenging to
interpret and modify. In this respect, these archi-
tectures behave as black box models. In order to
better understand the function of such network,
we analyze the modularity of these system by
quantifying the disentanglement of their intrinsic
parameters. This concept relates to a notion of
invariance to transformations of internal variables
of the generative model, recently introduced in the
field of causality. Our experiments on generation
of human faces with VAEs supports that modu-
larity between weights distributed over layers of
generator architecture is achieved to some degree,
and can be used to understand better the function-
ing of these architectures. Finally, we show that
modularity can be enhanced during optimization.

1. Introduction

Deep generative models have proven powerful in learning
to design realistic images in a variety of complex domains
(handwritten digits, human faces, interior scenes). In par-
ticular, two approaches have recently emerged: Generative
Adversarial Networks (GANs) (Goodfellow et al., 2014),
which train an image generator by having it fool a discrimi-
nator that should tell apart real from artificially generated
images; and Variational Autoencoders (VAEs) (Kingma and
Welling, 2013; Rezende et al., 2014) that learn both a map-
ping from latent variables to the data, the decoder, and the
converse mapping from the data to the latent variables, the
encoder, such that correspondences between latent variables

'MPI for Intelligent Systems, Tiibingen, Germany MPI
for Biological Cybernetics, Tiibingen, Germany >‘ENS
Rennes, France. Correspondence to: Michel Besserve
<michel.besserve @tuebingen.mpg.de>.

Presented at the ICML 2018 workshop on Theoretical Foundations
and Applications of Deep Generative Models, Stockholm, Sweden,
PMLR 80, 2018. Copyright 2018 by the author(s).

and data features can be easily investigated. Although these
architectures have been lately the subject of extensive in-
vestigations, understanding why and how they work, and
how they can be improved, remains elusive. One major
difficulty is the complexity of the function class entailed by
their non-linearities and high dimensional parameter space.
In order to improve this understanding, uncovering a mod-
ular structure in those architectures, such that each part of
a network can be assigned a specific function, would be a
major step forward.

In this paper, we propose that modularity can be quanti-
fied and exploited in a causal framework to infer whether
modules within the architecture can be further disentangled.
This hypothesis relies on recent work exploiting the postu-
late of Independence of Cause and Mechanism stating that
Nature chooses independently the properties of a cause and
those of the mechanism that generate effects from the cause
(Janzing and Scholkopf, 2010; Lemeire and Janzing, 2012).
It has been recently demonstrated that many approaches per-
taining to this framework rely on a principle of invariance
of the output of a mechanism with respect to transforma-
tions that are applied to its input (Besserve et al., 2018). We
then show this invariance is a natural property to enforce in
generative models, and that it extends the classical notion
of disentangled representation investigated in the literature.
Moreover, we propose that the Spectral Independence Crite-
rion (SIC) (Shajarisales et al., 2015) can be used to quantify
such invariance. We show empirically how VAEs trained
on the CelebA face dataset express a form of invariance to
perturbation of the intermediate activation maps. Finally we
show how optimizing the SIC can improve their desirable
invariance properties.

2. Modularity as intrinsic disentanglement
2.1. Forward-inverse optics in vision

We first introduce our framework in the context of a seminal
example: work in neuroscience and computer vision has
since long tried to address how a scene can be related to
a high level internal representation. Such question can be
framed using two objects: (1) the mapping of a 3D scene
to its perceived (2D) image, called forward optics, (2) the
converse mapping, called inverse optics, (see e.g. (Kawato
et al., 1993)).
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A key difference between both maps is that forward optics
can be concisely described with a restricted set of equations
taking into account physical parameters of the scene, while
inverse optics does not have an explicit form and relies
heavily on prior assumptions to be solved numerically. This
has led in particular to forward-inverse approaches to visual
perception, relying on the assumption that forward optics
can be implemented by feedback projections from higher to
lower visual areas, while feedforward projections provide
an initial rough estimate of the inverse optics (Kawato et al.,
1993; Tajima and Watanabe, 2011). The forward optics is
then further refined iteratively, following a predictive coding
principle (Rao and Ballard, 1999).

Paralleling this framework, many computer vision algo-
rithms have relied on inverse graphics approaches that
model both forward and inverse optics simultaneously
(Kulkarni et al., 2015). In recent years, emphasis has been
put on producing compact latent description of the scene in
terms of high level features, sometimes coined a graphics
code, reflecting a disentangled latent representation. How-
ever, the resulting architectures do not reflect the fundamen-
tal asymmetry in complexity between the original forward
and inverse optics maps. Taking as reference VAE and GAN
architectures, their forward and inverse maps are indeed
typically implemented as mirror convolutional networks, re-
sulting in two densely connected multilayered architectures
whose weights are mostly not interpretable. As simplicity of
the forward optics can allow an agent to efficiently manipu-
late and update internal representations, e.g. in order to plan
interactions with the outside world, we argue that modular-
ity of the forward models implemented by generators should
be enforced in order to be understood and manipulated eas-
ily. This is the objective of the framework presented in this

paper.

2.2. Causal generative models

In this paper, we will rely on the notion of causal generative
models to represent any latent variable model used to fit
observational data. Causality entails the idea that discov-
ered relationships between variables have some degree of
robustness to perturbations of the system under considera-
tion. As a consequence a causal model allows predicting
interventions and counterfactuals, and may thus generalize
better. Causal models can be described based on Structural
Equations (SEs) of the form

Y = f(X11X27"' >XN76)a

expressing the assignment of a value to variable Y based on
values of other variables X}, with possibly additional ex-
ogenous effects accounted for through the random variable
€. This expression thus stays valid if something selectively
changes on the right hand side variables, and accounts for
the robustness or invariance to interventions and counter-

factuals expected from causal models as opposed to purely
probabilistic ones (see for example (Peters et al., 2017; Pearl,
2000)). Such SEs can be combined to build a Structural
Causal Model made of interdependent modules to represent
a more complex system, for which dependencies between
variables can be represented by a directed acyclic graph G.
Let us use such structural model to represent our generator:

Definition 1 (Causal Generative Model (CGM)). A causal
generative model G(Pz,S, G) consists in a distribution Py,
over latent variables Z. = (Z,), a collection S of structural
equations assigning endogenous random variables V. =
(Vi) and output I based on values of their endogenous
or latent parents Pay, in the directed acyclic graph G. We
assume I has no latent parent, such that it is assigned by two
deterministic mappings using either latent or endogenous
variables

I'=g(Z)=4g(V).

The graphical representation of a CGM is exemplified on
Fig. la.

2.3. Two forms of disentanglement

We introduce here a formal definition of the above concept
of disentangled representation. In order to relate the defini-
tion to the concrete examples that will follow, we consider
without loss of generality that the generated variable [ is
meant to be an image.

Definition 2 (Extrinsic disentanglement). A CGM G is ex-
trinsically disentangled with respect to endomorphism T’
and subset of latent variables L, if there exists an endomor-
phism T' of the latent variables such that for any image
generated by a realization z = Z(w) of the latent variables
(I =g(z)

I(I) = g(T'(2)), 0]

where T (z) only affects values of components of z in L.

The sparsity of the disentanglement is then reflected by the
minimal size of the subset £. Extrinsic disentanglement can
be seen as a form of intervention on the CGM as illustrated
in Fig. 1b. In this figure, we represent the effect of applying
a transformation that affects only Z; (we thus abusively
write 7" (7)), thus modifying descendant nodes, leading to
a modified output I’ = T'(I). We can easily see that this
definition is compatible with the intuitive concept of disen-
tangled representation as used for example in Kulkarni et al.
(2015) in the context of inverse graphics, where 7" would
correspond to a change in e.g. illumination of the scene,
while 7" would simply shift the values of the sparse set of
latent variables controlling it." In order for the definition

'In the context of inverse graphics, it could be argued that
transformation 7" should apply to the unobserved 3D scene (for
example a 3D rotation of a face). This is compatible with our
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to be useful in a quantitative setting, we would require an
approximate version of equation (2), however we mostly
use this definition for the purpose of contrasting it with the
following.

Definition 3 (Intrinsic disentanglement). A CGM G is in-
trinsically disentangled with respect to endomorphism T
and subset of endogenous variables & if there exists an en-
domorphism T" such that for any image generated by a real-
ization z = Z(w) of the latent variables (I = g(z) = §(v)),

T(I) = g(T'(v)) 2)

where T'(v) only affects values of endogenous variables in

E.

An illustration of this second notion of disentanglement is
provided on Fig. 1c, where the split node indicates that the
value of V3 is computed as in the original CGM (Fig. 1a)
before applying transformation 7" to the outcome. Intrinsic
disentanglement directly relates to a causal interpretation of
the generative model and its robustness to perturbation of its
subsystems. To justify it, consider the case of Fig. 1d, where
the GCM has an unaccounted latent variable Z3. This may
be due to the absence of significant variations of Z3 in the
training set, or simply bad performance of the estimation
algorithm. If the remaining causal structure has been esti-
mated in a satisfactory way, and the full structure is simple
enough, a change in this missing variable can be ascribed
to a change in only a small subset of the endogenous nodes.
Then the transformation 7" from the definition can be seen
as a proxy for the change in the structural equations induced
by a change in Z3. Broadly construed, appropriate trans-
formations pairs (7,7") emulate changes of unaccounted
latent variables, allowing to check whether the fitted causal
structure is likely to be robust to plausible changes in the
dataset.

2.4. Related work

The issue of interpretability in convolutional neural net-
works has already been the topic of much research. Most of
that research however has focused on discriminative neural
networks, not generative ones. In the discriminative case,
efforts have been made to find optimal activation patterns
for filters ((Zeiler and Fergus, 2014),(Dosovitskiy and Brox,
2016)), to find correlation between intermediate feature
space and data features ((Fong and Vedaldi, 2017),(Zhang
et al., 2017b)) or to disentangle patterns detected by various
filters to compute an explanatory graph (Zhang et al., 2017a).
Furthermore, explicitly enforcing modularity in networks
has been tried recently with Capsule networks architectures
((Sabour et al., 2017)), although Capsule network explicitly

definition as long as it exists a (non-necessarily unique) solution
of the inverse graphics that can then be composed with 7.

separate the architecture in different modules before train-
ing. A more detailed overview can found in review (Zhang
and Zhu, 2018). It is important to emphasize discriminative
and generative processes differ significantly, and working
on generative processes allows to directly observe the effect
of changes in intermediate representations on the generated
picture rather than having to correlate it back input images.

The recent InfoGAN network ((Chen et al., 2016)) and
other works ((Mathieu et al., 2016; Kulkarni et al., 2015;
Higgins et al., 2017)) in disentanglement of latent variables
in generative models can be seen as what we define as
extrinsic disentanglement. As such, we believe our intrinsic
disentanglement perspective should be complementary with
such approaches and are not in direct competition.

Finally our approach relates to modularity and invariance
principles formulated in the field of causality, in particular
to (Besserve et al., 2018).

3. Quantifying modularity

Quantifying modularity of a given GCM presents several
challenges. State of the art deep generative networks are
made of densely connected layers, such that modules cannot
be identified easily beyond the trivial distinction between
successive layers. In addition, analysis of statistical depen-
dencies between successive nodes in the graph is not likely
to help, as the entailed relations are purely deterministic. In
addition, the notion of intrinsic disentanglement is specific
to transformations 7" and T”, and the relationship between
these functions may be very complex. However, the follow-
ing simplified framework provides a practical solution.

3.1. Independence of cause and mechanism (ICM)

Elaborating on the missing variable example of Fig. 1d,
a change in Z3 induces V3 to change to 7"(V'3), which
induces a change in V1. Given other variables are kept
fixed, the structural equation

Vi =m(V3),
is turned into a perturbed version
V= m(T'(Va))

Assuming the GCM is correct, this perturbation should
not affect the offspring vertices in a way compatible with
generic properties of I. As a consequence, some property
of V1, that we call C'(V7), specific to the modeled data will
remain approximately invariant to any such transformation
T’ such that

C(m(Vs)) = C(m(T'(V3)) . 3)

This formula can be interpreted as the resulting output trans-
formation 7" not affecting the summary statistics computed
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Figure 1: Graphical representation of CGMs. (a) Example CGM with 2 latent variables. (b) Illustration of extrinsic
disentanglement with £ = {1}. (c) Illustration of intrinsic disentanglement with & = {3}. (d) Illustration of unaccounted
latent variable emulated by (c). Nodes modified by intervention on the graph are indicated in blue.

by C(V1). If in addition, mimicking the effect of intrinsic
disentanglement on output I, we assume a transformation
T" such that 7" = m o T", then the above formula relates
directly to invariance of the function C itself as equation (3)
implies

Cm(Va)) ~ C(T" (m(V3))

This approach relates to the concept of ICM, in the sense
that the family of transformations 7" decouples the cause
V3 from the mechanism m (Besserve et al., 2018). Several
causal inference methods rely on the postulate that proper-
ties of cause and mechanism are “independent” in a sense
that can be formalized in various ways (Peters et al., 2017).
Broadly construed, it reflects the idea that the mechanism
does not adapt its properties to the specific input it receives,
such that the global properties of the effect are generic (i.e.
they are similar to what would have been produced with
another cause of the same kind). In the present context it
reflects the fact that V5 is modulated by a latent factor that
have nothing to do with the sub mechanism that computes
Vi from V3.

Now that we have shown ICM is a natural criterion to evalu-
ate intrinsic disentanglement, a quantifiable measure of how
well that criterion is respected has to be chosen.

3.2. Spectral Independence

Shajarisales et al. (2015) introduce a specific formalization
of ICM in the context of time series that will be suited to the
study of convolutional layers in deep neural network. This
relies on analyzing signals or images in the Fourier domain
(see supplemental information for a background on Fourier
analysis).

Assume now that our cause-effect pair (X, Y') is a weakly
stationary time series. This implies that the power of these
signals can be decomposed in the frequency domain using
their Power Spectral Densities (PSD) S, () and Sy (v). If

Y results from the filtering of X with convolution kernel h
Y ={Y,cphXs—r } =h*X. (4)

then PSDs are related by the formula S, (v) = |E(u) 125, (v)
for all frequencies v. The Spectral Independence Postulate
consists then in assuming that the power amplification of
the filter at each frequency |ﬂ(1/)\2 does not adapt to the
input power spectrum S, (), i.e. the filter will not tend to
selectively amplify or attenuate the frequencies with partic-
ularly large or low power. This can be formalized by stating
that the total output power (integral of the PSD) factorized
into the product of input power and the energy of the filter,
leading to the criterion (Shajarisales et al., 2015):

Postulate 1 (Spectral Independence Criterion (SIC)). Let
S, be the Power Spectral Density (PSD) of a cause X and
h the impulse response of the causal system of (4), then

1/2 =R 1/2 1/2
/ Sw(u)|h(u)|2du:/ Sm(y)du-/ () 2dv,
—1/2 —-1/2 —-1/2
)

holds approximately.

This equation relates to an invariance to particular transfor-
mation as defined above. Indeed, if we consider the family
of translations (TV)VE[O’] modulo 1 of the frequency axis,
then equation (5) amounts to invariance of the output signal
power P in the sense that

Ph+X)=E,P(h*x7,X)

where the frequency translation parameter v is drawn from
a uniform distribution of the unit interval. We can define
a scale invariant quantity px_,y measuring the departure
from this SIC assumption, i.e. the dependence between in-
put power spectrum and frequency response of the filter: the
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Spectral Dependency Ratio (SDR) from X to Y is defined
as

(S, - [B]2)
PX— e~ (6)
TS ()

where (.) denotes the integral (and also the average) over
the unit frequency interval. As a consequence, px_y ~ 1
reflects spectral independence.

4. Independence of mechanisms in deep
networks

We now introduce our causal reasoning in the context of
deep convolutional networks, where the output of successive
layers are often interpreted as different levels of representa-
tion of an image, from detailed low level features to abstract
concepts. We thus investigate whether a form of modularity
between successive layers can be identified using the above
framework.

4.1. SIC in convolutional layers

The SIC framework is well suited to the analysis of convo-
lutional layers, since it assumes deterministic convolution
mechanisms. Indeed, as can be seen looking at the leftmost
activation map of the lower layer in Fig.2a, an activation
map y (corresponding to one channel in the considered
layer) is generated from the n channels’ activation maps

1 ) in the previous layer through the filter

x = (zt, ... 2"
kernel f = (f1,..., fn) according to

y= fixa'+0. ™
i=1

By looking only at *partial activation maps yi, = f; * x°, it
is possible to view the relationship between a given (partial)
activation map and the downstream convolutional layer as
an actual convolution (with some additive constant bias).
Therefore, unless specified otherwise, the term filters will
refer specifically to partial filters (f;) in the rest of this

paper.

One difference appears with respect to the original SIC
assumptions: the striding possibly adds spacing between
input pixels in order to progressively increase the dimension
and resolution of the image from one layer to the next.
Striding can be easily modeled, as it amounts to upsampling
the input image before convolution. We denote .™* the
upsampling operation with integer factor” s that turns the
2D activation map x into

o[k, 1] = {g[k/s’l/s]’

k and [ multiple of s,
otherwise.

25 is the inverse of the stride parameter; the latter is fractional

in that case

x e g Loie " = ¢
i=m— ‘
s . q
L
)
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Figure 2: (a) Convolution pathways between layers. (b)
Architecture of the pretrained VAE generator used in our
experiments.

leading to a compression of the normalized frequency axis
in the Fourier domain such that x's(u, v) = X(su, sv). The
convolution relation in Fourier domain thus translates to
y(u,v) = h(u,v)X(su, sv). As a consequence, the SDR
measure needs to be adapted to upsampling by contracting
rescaling the frequency axis of the activation map with re-
spect to the one of the filter. Using power spectral density
estimates based on Bartlett’s method, we use a batch of in-
put images of size B leading to B values of activation map
x, xg,...,Xp—1, to obtain the following SDR estimate:

) <1 B [F(u, 0)% (su, sv)|2>
e <\uvm>< >0 R o))

As per our intrinsic disentanglement approach, modular-
ity with respect to activation maps is the specific point we
would like to attach most importance to. However, as can be
seen on Fig.2a, a single activation map will be transformed
in to multiple activation maps through convolution with
different filters f,g and h leading to multiple SDR statis-
tic. Therefore, we consider the average of all those SDR
statistics when we refer to an activation map’s SDR statistic.
Now that quantitative evaluation of SIC can be computed
for activation maps, we can try to further enforce spectral
independence.

®)

4.2. Optimizing filters to be more independent from
activation maps

Direct optimization euclidian distance to 1 of the SDR statis-
tic is challenging due to the normalization term in equation
(6). To avoid this, for a fixed activation map, we therefore
simply minimize the square difference between the SDR
and its ideal value of 1, but multiplied by the normalization
term <| fI2

minimization of the objective

_ ~ 2
|’f(u U)‘Q . ‘% EEEO Y xi(su, Sv)lz _1 . 9)
’ (1L S8 % (su, s0) )

. For a single (filter,map) pair, this leads to the
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When multiple pairs are considered we simply minimize the
sum of all corresponding objectives.

5. Experiments

We investigate in this section the above notions on real data
in the form of the CelebFaces Attributes Dataset (CelebA)>.
We used a plain VAE with least square reconstruction loss .*
The general structure of the VAE is summarized in Fig. 2b.
We distinguish the different layers with 4 levels indicated
in Fig.2b: coarse (closest to latent variables), intermediate,
fine and image level (closest to the image). Complete archi-
tecture details are provided in the supplemental material.

5.1. Evaluating invariance with a simple
transformation

We apply a 1.5 fold horizontal stretching transformation to
all maps of a single convolutional layer (coarse, intermedi-
ate, fine or image level) and compare the resulting distorted
image to the result of applying such a stretch to the normally
generated output image. The edges of the stretched maps
and images are cropped symmetrically to keep to the right
dimensions.

We suggest applying such transformation to intermediate
layers and observing how it affects the output as a way to get
some insights in the internal organization of such networks.
This approach is in addition justified on a theoretical ground
in section 2.

5.1.1. SCALE OF CONVOLUTIONAL LAYERS

The images obtained by distorting various convolutional
layers’ activation maps are presented in Fig. 3a for the VAE
trained with 10000 iterations. We can observe how the dis-
tortion affects differentially successive scales of the picture:
A concrete example can be observed directly by considering
the eyes generated by stretching the intermediate level ac-
tivation maps (thrid row of Fig. 3a). Although the location
of each eye changes according to the stretching, the eyes
themselves seem to mostly keep their original dimensions.
This supports the assumption that successive convolutional
layers build upon each other to encode different scales of
features. Interestingly, Fig. 3b replicating the result but after
40000 additional training iterations, show perturbed image
of poorer quality, suggesting a loss in modularity when the
number of iterations grows. In particular, grid like periodic
interference patterns appearing at the fine and image levels
are stronger, and may correspond to imperfect alignment
of the ouput of convolution kernels encoding neighboring
region of the image. Such artifact could possibly be tem-
pered by a different implementation of upsampling (e.g.

3
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://github.com/yzwxx/vae-celebA

using nearest neighbor interpolation instead of fractional
striding).

We next sought to quantify these initial observations using a
discrete Haar wavelet transform of the images. For a given
image, by zeroing wavelet coefficients at all but one scale
and applying the inverse wavelet transform, we generated
five component images containing features at successive
spatial scales, from coarse to fine. For each generated origi-
nal image and each scale, we then compute the difference
between the component of the stretched original image and
the component image obtained through distortion of a layer.
Resulting examples are plotted on Fig. 3¢ for 10000 training
iterations. The patterns of deformations for each level of
distorted activation map is in accordance with the previous
qualitative observations. In particular, we notice the pertur-
bation localized at the level of eyes, mouth and nose for the
intermediate level (Fig. 3c, second row), reflecting that the
dimensions of these patterns are not fully rescaled, although
their position is. We then computed the mean squared error
resulting from the above differences over all pixels of 64
images of a batch. The resulting histograms for each per-
turbed layer on Fig. 3d shows that the mismatch is more
concentrated on the finer scales, corresponding to scales
encoded below the distorted layer, as the kernels encoding
this finer scale are not affected by the stretch. For com-
parison, we show the same analysis for the case of 50000
training iteration of the VAE on Fig. 3d. It confirms the
above qualitative observations: modularity is less satisfied,
especially for perturbations at the fine and image levels (last
tWO rows).

5.1.2. EVOLUTION OF DISTORTIONS WITH TRAINING

As the objective function of a VAE’s generator is not directly
linked to the multiresolution structure observed previously,
the VAE may not naturally enforce modularity between its
layers during training. This is suggested by the deterio-
ration of modularity observed after 50000 iterations. To
quantify this effect, we tracked the evolution (as the number
of iterations grows) of the mean square errors at different
wavelet scales (Fig. 4a), as well as for the complete picture
(Fig. 4b), resulting from the stretch of the fine level convo-
lutional layer. Interestingly, this difference clearly grows
as the training progresses. Looking at the time evolution
of the errors at multiple scales, it seems to mostly be due
to a progressive rise of the distance in coarser scales. The
same overall increasing trend can be observed for the mean
squared error of the complete picture. Overall, this suggest
that the optimization algorithm does not enforce modularity
of the network, and can possibly be improved to take this
aspect into account. We thus investigated whether we can
encourage more independence from layer to layer during
optimization.
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Figure 3: VAE distortion experiment. (a) From top to bottom: normal image generated by the VAE after 10000 training
iterations, image resulting from distorting coarse/intermediate/fine/image level layer, stretched orginal. (b) Same as a, for
50000 training iterations. (c) Quantitative analysis for 10000 iterations. Left: Distortion levels at different wavelet scales
(1:coarsest, S:finest). Right: Difference with original stretched. From top to bottom: perturbation on coarse, intermediate,
fine and image level, respectively. (d) Same as c for 50000 iterations. (e) Same as d but with SDR optimization.

5.2. Optimizing modularity

To enforce a better modularity of the network while still
optimizing the VAE objective, we trained a VAE for which
we alternatively optimized filters of image, fine and inter-
mediate level (leaving one normal VAE iteration between
each) by minimizing the sum of the squared scalar product
presented in subsection 4.2 in addition to the normal weight
update resulting from the VAE objective.

To observe the effect of the new training process over mod-
ularity, we repeated the previous experiment and track the
mean squared error resulting from the difference between
distorted generated pictures and stretched normal images
when modifying the fine level convolutional layer when
comparing complete pictures (Fig.4c). As can be observed,
there is now a significant delay in the time at which the the
difference starts rising again. Moreover, the increase, when
it starts, seems slower. This is confirmed by the analysis of
example images at multiple scales for 50000 iterations, as
seen in Fig.3e, deformations at the intermediate, fine and
image level exhibit a better modularity, compared to the
what was obtain at the same number of iterations (Fig. 3d)
with classical VAE training. This supports a link between in-
trinsic disentanglement and spectral independence between
filters and activation maps.

6. Conclusion

We propose approaching modularity in generative networks
using a principle of invariance with respect to transforma-

(b

Figure 4: (a) Evolution of the residual error between dis-
torted outputs at the fine level and stretched original image
at different wavelet scales during VAE training. (b) Same
as a for the complete picture (all scales). (c) Same as b but
with SDR optimization

tion of their internal variables. To assess this notion of
intrinsic disentanglement, we analyzed generative networks
as Causal Generative Models and adapt a metric tracking
independence of cause and mechanism to evaluate the dis-
entanglement of successive layers of the network. We found
evidence of modularity in VAEs trained to generated images
of human faces. Moreover, imposing a additional step in
the optimization procedure to favor independence between
activation maps and filters helped bolster existing modular
behavior.
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Supplemental information
Background
FOURIER ANALYSIS OF DISCRETE SIGNALS AND IMAGES
The Discrete-time Fourier Transform (DTFT) of a sequence a = {a[k], k € Z} is defined as
a(v) =Y alkle ™" v eR.
keZ

Note that the DTFT of such sequence is a continuous 1-periodic function of the normalized frequency v. By Parseval’s

theorem, the energy (sum of squared coefficients) of the sequence can be expressed in the Fourier domain by ||al|3 =
fi{% |a(v)|?dv. The Fourier transform can be easily generalized to 2D signals of the form {b[k, ], (k, 1) € Z?}, leading to
a 2D function, 1-periodic with respect to both arguments

blu,v) = > blk, e 2Dy 0) € R?.
kEZ,IEZ

Network hyperparameters

Default network hyperparameters are summarized in Table 1 (they apply unless otherwise stated in main text).

Architecture VAE
Nb. of deconv. layers/channels of generator 4/(64,64,32,16,3)
Size of activation maps of generator (8,16,32,64)
Optimization algorithm Adam (8 = 0.5)
Minimized objective VAE loss (Gaussian posteriors)
batch size 64
Beta parameter 0.0005

Table 1



