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Abstract

In traditional Distributional Semantic Mod-
els (DSMs) the multiple senses of a polyse-
mous word are conflated into a single vector
space representation. In this work, we pro-
pose a DSM that learns multiple distributional
representations of a word based on different
topics. First, a separate DSM is trained for
each topic and then each of the topic-based
DSMs is aligned to a common vector space.
Our unsupervised mapping approach is moti-
vated by the hypothesis that words preserv-
ing their relative distances in different topic
semantic sub-spaces constitute robust seman-
tic anchors that define the mappings between
them. Aligned cross-topic representations
achieve state-of-the-art results for the task of
contextual word similarity. Furthermore, eval-
uation on NLP downstream tasks shows that
multiple topic-based embeddings outperform
single-prototype models.

1 Introduction

Word-level representation learning algorithms
adopt the distributional hypothesis (Harris, 1954),
presuming a correlation between the distributional
and the semantic relationships of words. Typi-
cally, these models encode the contextual infor-
mation of words into dense feature vectors—often
referred to as embeddings—of a k-dimensional
space, thus creating a Vector Space Model (VSM)
of lexical semantics. Such embeddings have been
successfully applied to various natural language
processing applications, including information re-
trieval (Manning et al., 2008), sentiment analysis
(Tai et al., 2015), and machine translation (Amiri
et al., 2016; Sharaf et al., 2017).

Despite their popularity, traditional DSMs rely
solely on models where each word is uniquely rep-
resented by one point in the vector space. From a
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linguistic perspective, these models cannot capture
the distinct meanings of polysemous words (e.g.,
bank or cancer), resulting in conflated word rep-
resentations of diverse contextual semantics.

To alleviate this problem, DSMs with multi-
ple representations per word have been proposed
in the literature, based on clustering local con-
texts of individual words (Reisinger and Mooney,
2010; Tian et al., 2014; Neelakantan et al., 2014).
An alternative way to train multiple representa-
tion DSMs is to utilize semantic lexical resources
(Rothe and Schütze, 2015; Pilehvar and Collier,
2016). Christopoulou et al. (2018), based on the
assumption that typically words appear with a spe-
cific sense in each topic, proposed a topic-based
semantic mixture model that exploits a combina-
tion of similarities estimated on topic-based DSMs
for the computation of semantic similarity be-
tween words. Their model performs well for a va-
riety of semantic similarity tasks; however, it lacks
a unified representation of multiple senses in a
common semantic space. The problem of defining
transformations between embeddings—trained in-
dependently under different corpora—has been
previously examined in various works, such as
machine translation (Mikolov et al., 2013b; Xing
et al., 2015; Artetxe et al., 2016), induction of
historical embeddings (Hamilton et al., 2016) and
lexical resources enrichment (Prokhorov et al.,
2017).

Following this line of research, we induce
the creation of multiple cross-topic word embed-
dings by projecting the semantic representations
of topic-based DSMs to a unified semantic space.
We investigate different ways to perform the map-
pings from the topic sub-spaces to the unified se-
mantic space, and propose a completely unsuper-
vised approach to extract semantic anchors that
define those mappings. Furthermore, we claim
that polysemous words change their meaning in
different topic domains; this is reflected in rela-



tive shifts of their distributional representations in
different topic-based DSMs. On the other hand,
semantic anchors should have consistent semantic
relationships regardless of the domain they reside
in. Hence, their distributions of similarity values
should also be similar across different domains.
Finally, we apply a smoothing technique to each
word’s set of topic embeddings, resulting in repre-
sentations with fine-grained semantics.

To our knowledge, this is the first time that map-
pings between semantic spaces are applied to the
problem of learning multiple embeddings for pol-
ysemous words. Our multi-topic word representa-
tions are evaluated on the contextual semantic sim-
ilarity task and yield state-of-the-art performance
compared to other unsupervised multi-prototype
word embedding approaches. We further per-
form experiments on two NLP downstream tasks:
text classification and paraphrase identification
and demonstrate that our learned word represen-
tations consistently provide higher performance
than single-prototype word embedding models.
The code of the present work is publicly avail-
able1.

2 Related Work

Methods that assign multiple distributed represen-
tations per word can be grouped into two broad
categories.2 Unsupervised methods induce mul-
tiple word representations without leveraging se-
mantic lexical resources. Reisinger and Mooney
(2010) were the first to create a multi-prototype
DSM with a fixed number of vectors assigned
to each word. In their model, the centroids of
context-dependent clusters were used to create
a set of “sense-specific” vectors for each target
word. Based on similar clustering approaches,
follow-up works introduced neural network archi-
tectures that incorporated both local and global
context in a joint training objective (Huang et al.,
2012), as well as methods that jointly performed
word sense clustering and embedding learning
as in Neelakantan et al. (2014); Li and Juraf-
sky (2015). A probabilistic framework was intro-
duced by Tian et al. (2014), where the Skip-Gram
model of Word2Vec was modified to learn multi-
ple embedding vectors. Furthermore, latent topics

1https://github.com/Elbria/utdsm_
naacl2018

2We limit our discussion to related works that use mono-
lingual DSMs and corpora.

were integrated into the Skip-Gram model, result-
ing in topical word embeddings which modeled
the semantics of a word under different contexts
(Liu et al., 2015b,a; Nguyen et al., 2017). An-
other topic-related embedding creation approach
was proposed in Christopoulou et al. (2018) where
a mixture of topic-based semantic models was ex-
tracted by topical adaptation of in-domain corpora.
Other approaches used autoencoders (Amiri et al.,
2016), convolutional neural networks designed to
produce context representations that reflected the
order of words in a context (Zheng et al., 2017)
and reinforcement learning (Lee and Chen, 2017;
Guo et al., 2018).

Supervised approaches, based on prior knowl-
edge acquired by sense inventories (e.g., Word-
Net) along with word sense disambiguation al-
gorithms, were also introduced for sense-specific
representations extraction (Chen et al., 2014; Ia-
cobacci et al., 2015). In other works, pre-trained
word embeddings have been extended to embed-
dings of lexemes and synsets (Rothe and Schütze,
2015) or were de-conflated into their constituent
sense representations (Pilehvar and Collier, 2016)
by exploiting semantic lexical resources.

3 Unified Multi-Topic DSM (UTDSM)

Our system follows a four-step approach:

1. Global Distributional Semantic Model.
Given a large collection of text data we train
a DSM that encodes the contextual semantics
of each word into a single representation, also
referred to as Global-DSM.

2. Topic-based Distributional Semantic Mod-
els. Next, a topic model is trained using
the same corpus. The topic model splits the
corpus into K (possibly overlapping) sub-
corpora. A DSM is then trained from each
sub-corpus resulting in K topic-based DSMs
(TDSMs). The topical adaptation of the se-
mantic space takes into account the contex-
tual variations a word exhibits under differ-
ent thematic domains and therefore leads to
the creation of “topic-specific” vectors (topic
embeddings).

3. Mappings of topic embeddings. Next, we
map the vector space of each topic-based
DSM to the shared space of the Global-DSM,
using a list of anchor words selected through

https://github.com/Elbria/utdsm_naacl2018
https://github.com/Elbria/utdsm_naacl2018


an unsupervised self-learning scheme. In
the unified semantic space each word is rep-
resented by a set of topic embeddings that
were previously isolated in distinct vector
spaces, thus creating a Unified multi-Topic
DSM (UTDSM).

4. Smoothing of topic embeddings. As an op-
tional step, we employ a smoothing approach
in order to cluster a word’s topic embeddings
into N Gaussian distributions via a Gaussian
Mixture Model (GMM). This step lessens the
noise introduced to our system through the
semantic mappings and sparse training data.

Figure 1: Simplified depiction summarizing the in-
tuition behind the alignment process of topic em-
beddings. In the unified vector space, the poly-
semous word cancer is represented by two topic
vectors that capture different semantic properties
of the word under a zodiacal and a medical topic.
Words astrology and tumor are examples of se-
mantic anchors that define the mappings.

3.1 Topic-Based Distributional Semantic
Models

The first step towards the thematic adaptation of
the semantic space is the induction of in-domain
corpora, using the Latent Dirichlet Algorithm
(LDA) (Blei et al., 2003). LDA is a generative
probabilistic model of a corpus. Its core idea is
that documents are represented as random mix-
tures over topics; where each topic is defined as a
probability distribution over a collection of words.
Given as input a corpus of documents, LDA trains

a topic model and creates a distribution of words
for each topic in the corpus. Using the trained
LDA model, we infer a topic distribution for each
sentence in the corpus. Afterward, following a soft
clustering scheme each sentence is included in a
topic-specific corpus when the posterior probabil-
ity for the corresponding topic exceeds a prede-
fined threshold. The resulting topic sub-corpora
are then used to train topic-based DSMs. Any of
the DSM training algorithms proposed in the lit-
erature can be used for this purpose; in this paper,
we opt for the Word2Vec model (Mikolov et al.,
2013a).

3.2 Mappings Of Topic Embeddings

The intrinsic non-determinism of the Word2Vec
algorithm leads to the creation of continuous vec-
tor spaces that are not naturally aligned to a unified
semantic reference space, precluding the compari-
son between words of different thematic domains.
To circumvent this limitation, we need to map the
word representations of TDSMs to a shared vector
space. In particular, we hypothesize that TDSMs
capture meaningful variations in usage of polyse-
mous words, while the relative semantic distance
between monosemous words is preserved. This
hypothesis motivated us to think of monosemous
words as anchors between semantic spaces, as il-
lustrated in Figure 1. One way to retrieve the list of
anchors is to extract monosemous words from lex-
ical resources such as WordNet (Prokhorov et al.,
2017). However, this method is restricted to lan-
guages where such lexical resources exist and de-
pends on the lexical coverage and quality of such
resources.

To overcome the above limitations, we pro-
pose a fully unsupervised method for semantic
anchor induction. Although the embeddings of
the topic and global semantic vector spaces are
not aligned, their corresponding similarity matri-
ces (once normalized) are. Based on this ob-
servation, we compute the similarity between a
given word and every other word in the vocabu-
lary (similarity distribution) for the different topic
and global spaces. Then, we assume that good se-
mantic anchors should have similar similarity dis-
tributions across the topic-specific and the global
space, as illustrated in Figure 2. Artetxe et al.
(2018) was based on a similar observation to align
vector semantic spaces in bilingual machine trans-
lation context.



view crater professor october

Figure 2: Similarity distributions of four different words (corresponding to the smoothed density estimates of
the similarity matrices) in topic domain space as defined in Equation 1 and global space sig . Selected anchors
(“professor” and “october”) have more similar distributions in the global and topic spaces, when compared to
unselected ones (“view” and “crater”). We observe that the selected anchors are less ambiguous, while the not
selected ones are expected to have diverse contextual semantics.

Let V be the intersection of the Global-DSM
and the K TDSMs vocabularies and d the embed-
ding dimension. We then define Xk ∈ R|V |×d
as the embedding matrix of the k-th TDSM, and
Y ∈ R|V |×d as the embedding matrix of the global
DSM, where the i-th row of each matrix corre-
sponds to the unit normalized representation of
a word in V . Then, we define Sk = XkX

T
k ,

Sg = Y Y T ∈ R|V |×|V | to be the similarity distri-
bution matrices for the k-th TDSM and the global-
DSM, respectively. Then our objective is to extract
a list of semantic anchorsA that minimizes the Eu-
clidean distance between the two different similar-
ity distributions. Specifically, for every word i we
calculate the average semantic distribution across
all topics:

<sik>k =
1

K

K∑
k=1

sik (1)

‖ <sik>k − sig ‖2 , ∀ i = 1, . . . , |V | (2)

where sig, sik is the i-th row of the Sg and Sk sim-
ilarity matrix, respectively, representing the simi-
larity distribution between word i and every other
word in the vocabulary V . We then choose |A| an-
chors as the words with the smallest values accord-
ing to criterion 2. Furthermore, we assume that
there exists an orthogonal transformation matrix
between the topic embeddings of the extracted se-
mantic anchors of each TDSM (source space) and
the corresponding representations of the global-
DSM (target space). The orthogonality constraint
on the transformation matrix is widely adopted
by the literature for various semantic space align-
ment tasks (Xing et al., 2015; Artetxe et al., 2016;
Hamilton et al.). Assume αj

k ∈ Rd is the vec-
tor representation of the j-th anchor word in the

source space and αj
g ∈ Rd is its correspond-

ing vector representation in the target space. The
transformation matrix Mk ∈ Rd×d that projects
the first space to the latter is learned via solving
the following constraint optimization problem:3

min
Mk

|A|∑
j=1

‖Mkα
j
k − α

j
g‖22, s.t. MkM

T
k = I (3)

The induction of multiple topic embeddings in
the unified vector space is achieved via applying
Equation 3 to each TDSM. Specifically, given a
word and its k-th topic distributed representation
xk ∈ Rd, we compute its projected representation
x′k ∈ Rd as follows:

x′k =Mkxk (4)

3.3 Smoothing Of Topic Embeddings
Starting from the set of aligned topic embeddings
{x′k}Kk=1 for each word, we learn a Gaussian Mix-
ture Model with N components, where closely
positioned topic embeddings are assigned to the
same component. This step operates as an im-
plicit way of segmenting the space of topic em-
beddings for each word in order to capture more
useful hyper-topics—union of topics—which bet-
ter represent their different meanings. We suggest
that each Gaussian distribution forms a semanti-
cally coherent unit that corresponds to closely re-
lated semantics of the target word. Subsequently,
the mean vector of each Gaussian distribution is
used as a representative vector of each component,
leading to a new set of smoothed topic embeddings
{x∗n}Nn=1 for each word, where x∗n ∈ Rd.

3This problem is known as the orthogonal Procrustes
problem and it has a closed form solution as proposed in
(Schönemann, 1966).



4 Experimental Setup

4.1 DSM Settings
As our initial corpus we used the English
Wikipedia, containing 8.5 million articles (Tur-
ney, 2012). During the training of the topic model,
we used the articles found in the Wikipedia cor-
pus and employed the Gensim implementation of
LDA (Rubenstein and Goodenough, 1965) setting
the number of topics K to 50. Using a threshold
of 0.1, we followed a soft-clustering approach, to
bootstrap the creation of topic sub-corpora, using
our trained topic model. Finally, we used Gen-
sim’s implementation of Word2Vec and Continu-
ous Bag-of-Words method to train both the global-
DSM and the TDSMs. The context window pa-
rameter of Word2Vec is set to 5, while the dimen-
sionality d of all the constructed DSMs is equal to
300 or 500.4

4.2 Semantic Anchors
The number of semantic anchors that determine
the mappings between our source and target
spaces is set to |A| = 5000 5 according to our
unsupervised approach (criterion 2). Those are se-
lected from the common set of words that are rep-
resented in all semantic spaces with |V | ∼ 12 000.

As a second experiment, we randomly sample
|A| words from the vocabulary of each TDSM to
define its transformation matrix. We repeat this
experiment 10 times, every time sampling a dif-
ferent list from the corresponding vocabulary and
report average performance results.

4.3 Gaussian Mixture Model
To apply the smoothing technique on the set of
a word’s topic embeddings we use the Scikit-
learn implementation of Gaussian Mixture Model
clustering algorithm (Pedregosa et al., 2011).
We initialize the mean vector of each compo-
nent using k-means algorithm and the parame-
ters of the model are estimated using Expectation-
Maximization (EM) algorithm.

4.4 Contextual Semantic Similarity
To estimate the semantic similarity between a pair
of words provided in sentential context, we use

4Any parameter not mentioned is set to default values of
the corresponding implementations (e.g., Word2Vec, Gensim
LDA).

5 We have experimented with different values of anchors
from {1 000, 2 000, 3 000, 4 000, 5 000} and report results
for the best setup.

the standard evaluation Stanford Contextual Word
Similarity (SCWS) (Huang et al., 2012) dataset
which consists of 2 003 word-pairs with assigned
semantic similarity scores computed as the aver-
age estimations of several human annotators. Fol-
lowing the evaluation guidelines proposed in lit-
erature, we employ the AvgSimC and MaxSimC
contextual metrics, firstly discussed in Reisinger
and Mooney (2010). In particular, given the word-
pair (w,w′), and their provided contexts (c, c′) we
define:

AvgSimC(w,w′) =

1

K2

K∑
j=1

K∑
k=1

p(j|w, c)p(k|w′, c′)d(x′j(w), x′k(w
′)),

(5)

MaxSimC(w,w′) = d(x̂′(w), x̂′(w′)), (6)

Following the notation used in 3.2, K is the num-
ber of topics returned by the trained LDA model,
x′j is the word embedding trained on the sub-
corpus corresponding to the j-th topic after be-
ing projected to the unified vector space, p(j|w, c)
denotes the posterior probability of topic j re-
turned by LDA given as input the context c of
word w, d denotes the cosine similarity between
the two input representations and finally x̂′(w) =
uargmax1≤j≤K p(j|w,c)(w) is the vector represen-
tation of word w that corresponds to the topic
with the maximum posterior for c. Intuitively,
a higher score in MaxSimC indicates the exis-
tence of more robust multi-topic word represen-
tations. On the other hand, AvgSimC provides a
topic-based smoothed result across different em-
beddings.

4.5 Downstream NLP Tasks
Besides the standard evaluation benchmark of
contextual word similarity, we also investigate the
effectiveness of our mapped cross-topic embed-
dings on document and sentence level downstream
NLP tasks: text classification and paraphrase iden-
tification. We report weighted-averaging pre-
cision, recall, F1-measure and accuracy perfor-
mance metrics.
Text classification. We used the 20NewsGroup6

dataset, which consists of about 20 000 docu-
ments. Our goal is to classify each document into
one of the 20 different newsgroups based on its
content.

6http://qwone.com/ jason/20Newsgroups/



Paraphrase Identification. For this task we
aimed at identifying whether two given sentences
can be considered paraphrases or not, using the
Microsoft Paraphrase dataset (Dolan et al., 2004).
Document and Sentence level representations.
Given a document or a sentence D, where wd cor-
responds to the d-th word in D, we extract its fea-
ture representation using three different ways:

AvgCD =
1

|D|

|D|∑
d=1

K∑
k=1

p(k|D)x′k(wd), (7)

AvgD =
1

|D|

|D|∑
d=1

K∑
k=1

1

K
x′k(wd), (8)

MaxCD =
1

|D|

|D|∑
w=1

x′m(wd)

s.t. m = argmax
k=1,..,K

{p(k|D)},

(9)

where p(k|D) denotes the posterior probability of
topic k returned by LDA given as input the sen-
tence/document D and x′k(wd) is the mapped rep-
resentation of word wd for topic k. For the case of
paraphrase identification, we extract a single fea-
ture vector for each sentence-pair via concatenat-
ing the features of the individual sentences.

After feature extraction, we train a linear Sup-
port Vector Classifier (SVM) (Pedregosa et al.,
2011) using the proposed train/test sets for both
tasks. We report the best results for each ex-
perimental configuration after tuning the SVM’s
penalty parameter of the error term using 500-
dimensional word embeddings.

5 Results

In Table 1 we compare our model (UTDSM) with
our baseline (Global-DSM) and other state-of-
the-art multi-prototype approaches for the contex-
tual semantic similarity task. It is clear that all
different setups of UTDSM perform better than
the baseline for both contextual semantic similar-
ity metrics. Using a single Gaussian distribution
(UTDSM + GMM (1)) at the smoothing step of
our method produces similar results to the base-
line model. This is anticipated as both methods
provide a centroid representation of a word’s di-
verse semantics. In terms of MaxSimC the model
consistently yields higher performance when the
list of semantic anchors is induced via our un-

supervised method instead of using randomly se-
lected anchor words (UTDSM Random). We also
observe that random anchoring performs slightly
worse than UTDSM with respect to AvgSimC.
This result validates our hypothesis that the repre-
sentations of words, which share consistent simi-
larity distributions across different topic domains,
constitute informative semantic anchors that de-
termine the mappings between semantic vector
spaces.

Method AvgSimC MaxSimC
Liu et al. (2015a) 67.3 68.1
Liu et al. (2015b) 69.5 67.9
Amiri et al. (2016) 70.9 -
Lee and Chen (2017) 68.7 67.9
Guo et al. (2018) 69.3 68.2

300-dimensions
Global-DSM 67.1 67.1
UTDSM Random 69.1± 0.1 66.4± 0.2
UTDSM 69.6 67.1
UTDSM + GMM (1) 67.4 67.4
UTDSM + GMM (2) 68.4 68.3
UTDSM + GMM (3) 68.9 68.3
UTDSM + GMM (8) 69.1 68.0
UTDSM + GMM (10) 69.0 67.8

500-dimensions
Global-DSM 67.6 67.6
UTDSM Random 69.4± 0.1 66.5± 0.3
UTDSM 70.2 68.0
UTDSM + GMM (1) 67.6 67.6
UTDSM + GMM (2) 68.8 68.6
UTDSM + GMM (3) 69.0 68.5
UTDSM + GMM (8) 69.5 68.5
UTDSM + GMM (10) 69.2 68.0

Table 1: Performance comparison between differ-
ent state-of-the-art approaches on SCWS, in terms of
Spearman’s correlation. UTDSM refers to the pro-
jected cross-topic representation, UTDSM Random
refers to the case when random words served as an-
chors and GMM (c) corresponds to GMM smoothing
with c components.

Furthermore, we observe that GMM smooth-
ing has a different effect on the MaxSimC and
AvgSimC metrics. Specifically, for AvgSimC
we consistently report lower results when GMM
smoothing is applied for different number of com-
ponents. We attribute this behavior to a possible
loss of model capacity—decrease in the number
of topic embeddings—that is capable of capturing
additional topic information. At the same time,
our smoothing technique highly improves the per-



formance of MaxSimC for all possible configu-
rations. Given that this metric is more sensitive
to noisy word representations, this result indicates
that our technique lessens the noise introduced to
our system and captures finer-grained topic senses
of words.

Overall, the performance of our model is highly
competitive to the state-of-the-art models in terms
of AvgSimC, for 500-dimensional topic embed-
dings. We also achieve state-of-the-art perfor-
mance for the MaxSimC metric, using smoothed
topic embeddings of 300 or 500 dimensions with
2 or 3 Gaussian components.

Method Precision Recall F1-score Accuracy
LDA 39.7 41.8 38.8 41.8
Global-DSM 62.9 63.3 62.9 63.3

MaxCD 61.9 63.0 62.0 63.0
AvgD 63.5 64.6 63.3 64.3
AvgCD 64.6 65.5 64.5 65.5

Table 2: Evaluation results of multi-class text classifi-
cation.

Evaluation results on text classification are pre-
sented in Table 2. We observe that our model per-
forms better than the baseline across all metrics
for both averaging approaches (AvgCD, AvgD),
while the usage of dominant topics appears to have
lower performance (MaxCD). Specifically, we get
an improvement of 2− 2.5% on topic-based aver-
age and 0.5− 1% on simple average combination
compared to using Global-DSM.

Method Precision Recall F1-score Accuracy
Global-DSM 68.6 69.2 62.0 69.2

MaxCD 69.0 69.3 62.1 69.3
AvgD 67.7 69.4 64.0 69.4
AvgCD 68.8 69.4 62.6 69.4

Table 3: Evaluation results on paraphrase detection
task.

Results for the paraphrase identification task are
presented in Table 3. AvgD yields the best results
especially in F1 metric showing that cross-topic
representations are semantically richer than sin-
gle embeddings baseline (Global-DSM). Although
we apply the topic distributions p(k|D) extracted
from LDA (document-level model) to a sentence-
level task, improvements over the baseline are also
shown in the AvgCD and MaxCD cases.

Overall, the proposed UTDSM model outper-
forms the baseline Global-DSM model on both se-

mantic similarity and downstream tasks.7

6 Cross-Domain Semantic Analysis

Finally, we carry out a cross-domain semantic
analysis to detect the variations of a word’s mean-
ing in different topic domains. To that end, we use
a list of known polysemous words and measure the
semantic similarity between different topic repre-
sentations of the same ambiguous word. The ul-
timate goal of this analysis is to validate that our
model captures known thematic variations in se-
mantics of polysemous words.

Table 4 includes examples of our analysis. The
most probable words of the topics (second col-
umn) give an intuitive sense of their major con-
texts, while their nearest neighbors (third col-
umn) infer the sense of the target word in the
corresponding topic domain. For example, the
word drug is mostly related to “medication” in
a broad medical domain; it experiences though a
slight shift from this meaning when it resides in
a topic about “illegal substances”. Furthermore,
the highly polysemous word act shifts from mean-
ing “statute” to meaning “performance” under the
corresponding law and art topics. Similar seman-
tic variations are observed for words python, rock
and nursery.

Moreover, in Figure 3 we visualize the topic
embeddings of seven words before and after pro-
jecting the topic-based DSMs to the unified space,
using principal component analysis. We addition-
ally depict the Gaussian distribution learned from
the topic representations of each word reflecting
the uncertainty of their meanings. The center of
each distribution is specified by the mean vec-
tor and contour surface by the covariance matrix.
On the left, we depict the position of words prior
to applying the unsupervised mapping approach
where the topic sub-spaces are unaligned. In the
unaligned space, words demonstrate similar area
coverage regardless of their polysemy. After the
mappings, we see on the right that the area un-
der a word’s distribution is indicative of its de-
gree of polysemy. Specifically, we observe that the
variance of the learned representations becomes
larger for the cases of polysemous words such as

7Similar results were obtained for each metric using
smoothed word embeddings. Also, there are no standard
evaluation approaches for comparison of previous works on
downstream tasks.

8Note that a topic domain is described as a distribution
over words in our model.



Word Topic Words Nearest Neighbors Similarity

drug
health, medical, cancer, treatment, disease insulin, therapy, heparin, chemotherapy, vaccines

0.61
drug, health, marijuana, alcohol, effects meth, cocaine, methamphetamine, mdma, heroin

act
law, court, legal, tax, state bylaw, legislature, complying, entities, entitlement

0.39
music, guitar, piano, dance, theatre touring, pantomime, weekend, shakespeare, musical

python
garden, plant, fish, bird, animal macaw, crocodile, hamster, albino, rattlesnake

0.27
software, forum, download, windows, web algorithm, parser, notepad, gui, tutorial

rock
mountain, river, park, road, trail geology, slab, limestone, waterfalls, canyon

0.43
music, guitar, piano, dance, theatre touring, acoustic, americana, songwriter, combo

nursery
garden, plant, tree, flower, gardening camellias, succulents, greenhouse, ornamental, grower

0.46
university, school, college, education, program prep, montessori, grammar, preschool, infant

Table 4: Examples of polysemous words and the change of meaning between different topic domains. First
column lists the example target words. Second column includes the most probable words of the topic domains8

these words are assigned to. Each row corresponds to a different topic domain. Third column shows the nearest
monosemous neighbors of the target word in the corresponding topic domain. The last column corresponds to the
cosine similarity between the two topic representations of the target word.

Figure 3: A 2-dimensional projection of the latent semantic space encoded in our unified vector space model,
depicting the topic word representations of 7 words before (left) and after (right) mapping the TDSMs to the
global semantic space.

“python”, “java”, “adobe” in order to assign some
probability to their diverse meanings. Monose-
mous words such as “snake”, “microsoft” and
“malay” have smaller variances. Furthermore, we
observe that the semantic relationships between
words are much better captured by their corre-
sponding positions in the aligned space.

7 Conclusion

We present an unsupervised approach of mapping
multiple topic-based DSMs to a unified vector
space in order to capture different contextual se-
mantics of words. We assume that words having
consistent similarity distributions regardless of the
domain they exist in could be considered infor-
mative semantic anchors that determine the map-
pings between semantic spaces. The projected
word embeddings yield state-of-the-art results on
contextual similarity compared to previously pro-
posed unsupervised approaches for multiple word
embeddings creation, while they also outperform

single vector representations in downstream NLP
tasks. In addition, we provide insightful visualiza-
tions and examples that demonstrate the capability
of our model to capture variations in topic seman-
tics of words.

As future work, one can hypothesize that the
area a word covers in the mapped space reveals its
semantic range. In this direction, a refinement of
the semantic anchor selection approach could be
explored in an iterative way assuming that the vari-
ance of a word’s Gaussian distribution denotes its
degree of polysemy (Vilnis and McCallum, 2015).
Moreover, we would like to explore a more so-
phisticated smoothing technique where the num-
ber of Gaussian components is adapted for each
word. Given that Gaussian mixture embeddings
could capture the uncertainty of a word’s repre-
sentation in the semantic space one could also in-
vestigate different metrics for measuring the se-
mantic relationship between word pairs that go be-
yond their point-wise comparison. Finally, it may



be helpful to investigate non-linear mappings be-
tween semantic spaces using deep neural network
architectures.
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Hal Daumé III. 2016. Learning text pair similarity
with context-sensitive autoencoders. In Proc. An-
nual Meeting of the Association for Computational
Linguistics (ACL), volume 1, pages 1882–1892.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2016.
Learning principled bilingual mappings of word em-
beddings while preserving monolingual invariance.
In Proc. Conference on Empirical Methods in Nat-
ural Language Processing, volume 1, pages 2289–
2294.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018.
A robust self-learning method for fully unsupervised
cross-lingual mappings of word embeddings. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 789–798.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun.
2014. A unified model for word sense representa-
tion and disambiguation. In Proc. Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1025–1035.

Fenia Christopoulou, Eleftheria Briakou, Elias Iosif,
and Alexandros Potamianos. 2018. Mixture of
topic-based distributional semantic and affective
models. In 2018 IEEE 12th International Confer-
ence on Semantic Computing (ICSC), pages 203–
210.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase cor-
pora: Exploiting massively parallel news sources.
In COLING 2004: Proceedings of the 20th Interna-
tional Conference on Computational Linguistics.

Fenfei Guo, Mohit Iyyer, and Jordan Boyd-Graber.
2018. Inducing and embedding senses with scaled
gumbel softmax. arXiv preprint arXiv:1804.08077.

William L. Hamilton, Jure Leskovec, and Dan Juraf-
sky. Diachronic word embeddings reveal statisti-
cal laws of semantic change. In Proc. 54th Annual
Meeting of the Association for Computational Lin-
guistics, volume 1, pages 1489–1501.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016. Diachronic word embeddings reveal statisti-
cal laws of semantic change. In Proc. 54th Annual
Meeting of the Association for Computational Lin-
guistics.

Zellig S. Harris. 1954. Distributional structure. Word,
10(2–3):146–162.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proc. Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
873–882.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2015. Sensembed: Learning sense
embeddings for word and relational similarity. In
Proc. Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 95–105.

Guang-He Lee and Yun-Nung Chen. 2017. Muse:
Modularizing unsupervised sense embeddings. In
Proc. Conference on Empirical Methods in Natural
Language Processing, pages 327–337.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
In Proc. Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1722–
1732.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2015a.
Learning context-sensitive word embeddings with
neural tensor skip-gram model. In Proc. Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI, pages 1284–1290.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong
Sun. 2015b. Topical word embeddings. In Proc.
AAAI Conference on Artificial Intelligence, pages
2418–2424.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to Information
Retrieval. Cambridge University Press.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. volume abs/1301.3781.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In HLT-NAACL.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proc. Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 1059–1069.

Dai Quoc Nguyen, Dat Quoc Nguyen, Ashutosh Modi,
Stefan Thater, and Manfred Pinkal. 2017. A mixture
model for learning multi-sense word embeddings.



In Proc. 6th Joint Conference on Lexical and Com-
putational Semantics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Mohammad Taher Pilehvar and Nigel Collier. 2016.
De-conflated semantic representations. In Proc.
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1680–1690.

Victor Prokhorov, Mohammad Taher Pilehvar, Dimitri
Kartsaklis, and Nigel Collier. 2017. Learning rare
word representations using semantic bridging.

Joseph Reisinger and Raymond Mooney. 2010. Mix-
ture Model with Sharing for Lexical Semantics. In
Proc. Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1173–1182.

Sascha Rothe and Hinrich Schütze. 2015. Autoex-
tend: Extending word embeddings to embeddings
for synsets and lexemes. In Proc. Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 1793–1803.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM, pages 627–633.

Peter H. Schönemann. 1966. A generalized solution of
the orthogonal procrustes problem.

Amr Sharaf, Shi Feng, Khanh Nguyen, Kiante Brant-
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