We test the DS model for pose estimation on the "Buffy the Vampire Slayer" data set.

Introduction

Pictorial Structures (PS) models do not represent shape deformations induced by pose.

Contribution: Deformable Structures (DS) are a generative model of 2D human shape that can represent pose-dependent shape deformations.

Training data

Training contours are derived by SCAPE, a realistic, parametric 3D model of articulated human shape, projecting random poses with random cameras.

The model is gender and person specific.

Model

\[p(L|θ) = \frac{1}{Z} \prod_{i=1}^{Ld} \phi_{li}(l_i) \prod_{i<j \in K} \psi_{ij}(l_i, l_j(θ_{ij})) \]

- \(l_i = (c_i, θ_i, z_i) \)
- \(c_i = \) location, \(θ_i = \) orientation, \(z_i = \) shape.

Shape representation

\[
\begin{align*}
\mathbf{s}_i &= \text{contour points}, \\
\mathbf{p}_i &= \text{joint points}, \\
\mathbf{z}_i &= \text{PCA coefficients}, \\
\mathbf{n}_i &= \text{mean shape}, \\
\mathbf{B}_i &= \text{basis components}.
\end{align*}
\]

Probabilistic model

\[
\psi_{ij}(l_i, l_j(θ_{ij})) = N(\mathbf{z}_j, \sin(θ_{ij}), \cos(θ_{ij}), \mathbf{q}_{ij}, t_j, t_i, μ_{ij}, Σ_{ij})
\]

- \(θ_{ij} = \) relative angle, \(t_i = \) part lengths, \(\mathbf{q}_{ij} = \) vector between joint points.

Sampling

- \(\theta_{ij} = \) output of a linear SVM classifier, \(a_i \) and \(b_i = \) calibration parameters, \(h_i = \) set of HOG descriptors computed at contour locations and steered along the contour direction.

\[
\phi_{\text{contour}}(l_i) = \frac{1}{1 + \exp(a_i f_i(l_i) + b_i)}
\]

Likelihood

\[
\phi_{\text{color}}(l_i) = \prod_{r \in h(l_i)} \text{hist}(r)
\]

- \(\text{hist} = \) histogram of skin colors or upper body colors.

Inference

Due to the high dimensional variables and continuous state space, inference is performed with a particle-based version of Max-Product BP.